
FIRST EDITION

MATLAB
An Introduction to

Authors: Amir Ghaemi | Mohammad Ghaemi

To Chris Jones for being a great mathematician, a wonderful teacher,
and an amazing mentor. Who presented us with such great opportunity
to write this book.

To Harford Community College, an amazing two-year college, to which
enabled us and gave us a purpose towards writing this book.

Dedications

https://www.harford.edu/about-harford/get-to-know-harford/faculty-staff-directory/christopher_jones.php
https://www.harford.edu/

“Hello, My name is Amir Ghaemi, I am currently a Computer Engineering student at the University of
Maryland in College Park. I graduated from Harford Community College with an Associates degree in
Engineering in 2018. Throughout my career, I have had many interactions with MatLab and I
understand the importance of this programming language within any STEM major. Looking back at
my two years at HCC, I wish that there was a course offered to teach us the fundamentals of MatLab
in order to prepare us for when we go to a four-year University. So, I decided to meet with Prof. Chris
Jones, and try to set up a new optional MatLab course at HCC for future students. In this book, I will
be passing on my current knowledge as well as the research conducted on MatLab to future students
interested in learning the MatLab language.”

-Amir Ghaemi

“Hi, I am Mohammad Ghaemi, and I am currently a student of the University of Maryland: College
Park. I am planning to get a degree in Computer Science: Data Science there. Although I am only in
my first year at college, MATLAB was still used frequently throughout my math classes and the
professors simply expected students to know it or learn it. And so when Amir introduced me to
Professor Chris Jones over the summer and talked to me about this project, I accepted it immediately
with the hope that we could help future students learn MATLAB from a single source that provides
concise information, accurate examples, and helpful practice problems.”

-Mohammad Ghaemi

A word from the authors

https://www.linkedin.com/in/amirmghaemi/
https://cisess.umd.edu/meet-our-scientists/mohammed-ghaemi/
https://www.linkedin.com/in/amirmghaemi/

Our goal in writing this book is to help students that are new to MATLAB

and programming in general, learn the fundamental concepts that come

with the subject. This book should help students utilize MATLAB in their

mathematical studies and more. MATLAB can and is used beyond simple

mathematical computation (across a variety of studies from physics to

chemistry) and while chapter one will cover some possible applications,

because the purpose of this book is to introduce students to MATLAB,

these applications will not be covered beyond what is shown in chapter

one. We hope to pass on our knowledge and research of MATLAB to our

future students pursuing this useful language.

Purpose

Contents
Chapter 1: Introduction to MATLAB

1.1 What is MATLAB?
1.2 Windows of MATLAB
1.3 Basic MATLAB Commands And Functions
1.4 Importing, Saving, Loading, And Executing In
MATLAB
1.5 Real World Applications of MATLAB
Student Exercises

Chapter 2: Data Types and Basic
Evaluations

2.1 Numeric Data Types
2.2 Characters and Strings
2.3 Conversion and Identification
2.4 Basic Numeric Operations
2.5 Input and Output
Student Exercises

Chapter 3: Algebraic Computation

3.1 Simplifying
3.2 Expanding
3.3 Factoring
3.4 Solving Equations
3.5 Partial Fraction Decomposition
Student Exercises

Chapter 4: Conditions and Loops

4.1 Conditional Statements
4.2 Basic Boolean Operations
4.3 Switch, Case, Otherwise
4.4 For Loops
4.5 While Loops
4.6 Try and Catch
4.7 Useful Commands
Student Exercises

Chapter 5: Arrays

5.1 Categorical Arrays
5.2 Cell Arrays
5.3 Tables
5.4 Structures
5.5 Conversions
Student Exercises

Chapter 6: Classes and Functions

6.1 Functions
6.2 Classes
6.3 Enumeration
6.4 Recursion
Student Exercises

Chapter 7: Data and Statistics

7.1 Basic Statistical Functions
7.2 Importing Data
7.3 Plotting Data
7.4 Analyzing Data
Student Exercises

Chapter 8: Coordinate Systems

8.1 Plotting Basics
8.2 Rectangular
8.3 Parametric
8.4 Polar
8.5 Cylindrical
8.6 Spherical
Student Exercises

Chapter 9: Two-Dimensional Vector
Operations

9.1 Vectors and Basic Vector Operations
9.2 Plotting
9.3 Other Operations
Student Exercises

Chapter 10: Calculus In MATLAB

10.1 Limits
10.2 Derivatives
10.3 Integrals
10.4 Infinite Series
Student Exercises

Introduction to MATLAB:

Chapter 1

Section 1: What is MATLAB?

Section 2: Windows of MATLAB

Section 3: Basic MATLAB Commands

Section 4: Importing, Saving, Loading, and Executing In MATLAB

Section 5: Real Worlds Applications of MATLAB

Student Exercises

What is MATLAB? By definition MATLAB is a high-performance language for technical computing that
was developed by MathWorks. It integrates computation, visualization, and programming in an easy -to-
use environment where problems and solutions are expressed in familiar mathematical notation. MATLAB
is derived from two words, Matrix and laboratory. In 1984 when MATLAB was created using C, MATLAB
was originally for working with matrices and vectors.

Section 1: What is MATLAB?

 Introduction to MATLAB Page 3

Figure 1.1

Current Folder:
The pane on the left (labelled "Current Folder") allows you to browse through the files on your computer

Command Window:
The pane in the center (labelled "Command Window") is the place where you enter commands that you
want MATLAB to perform. Notice the prompt that will end with >>. That's the point where you type a
command!

Workspace:
The pane on the right(labelled "Workspace") serves several purposes. For beginners, it's main
functionality is that it displays the values of all of the current variables that you have defined. Note that
you can edit the stored values by right-clicking the variable name.

There are multiple panes or regions in MATLAB. By the default configurations MATLAB shows 3 panes. The
below figure shows MATLAB in action, and shows what each pane is:

You can add a new script by clicking the "New Script" button on the top-left corner, or use control+n (for
Windows) or command+n (for Mac) as a shortcut.

Command
WindowCurrent

Folder

Workspace

Section 2: Windows of MATLAB

 Introduction to MATLAB Page 4

Figure 1.2

Editor:
The Editor pane includes all scripts, which are selectable as different tabs.

Scripts:
A script is a file that contains multiple sequential lines of MATLAB commands and function calls.

Editor

Scripts

 Introduction to MATLAB Page 5

quit: 'quit' terminates the MATLAB program, note that it does not save your progress

help: 'help' will bring up a huge list of topics you can get help on. You can just click on the
topics' links and it will show details on the selected topic. You can also ask for help on a
specific MATLAB command. For example, to get help on the 'quit' command, you can type
'help quit'.

doc: In addition to the help feature, you can access general documentation about the
MATLAB program. Note that the amount of information contained here is encyclopedic
and may be a bit overwhelming for beginners! But it's useful to have a complete
documentation of the program available.

stop: The 'stop' function stops the execution of a MATLAB command. In other words, it
breaks out of a computation.

helpwin: This command displays a more conventional graphical interface for the help
command, 'helpwin' brings up a help window that looks something like this:

Figure 1.3

Comments: Computer programmers use comments throughout their code to explain their
logic and their code within the code file. They do this so that in the case if they ever need
to go back to their code, or if another developer looks at their code, they can understand
it better. So, many computer languages allow the programmer to place comments within
their code in various ways. MATLAB uses '%' before a line, to make the line a comment. In
other words, placing the '%' character will exclude that line of code from compiling as a
part of the program.

MATLAB has a set of commands that can be directly typed into the command window.
Commands such as quit, help, doc, stop and helpwin.

Section 3: Basic MATLAB Commands and Functions

 Introduction to MATLAB Page 6

In MATLAB, importing data is a very useful feature, which will be needed later on. To import a
file, navigate to the top of the screen, make sure you are on the 'HOME' tab, then click import
data and select your file directory. Below is a figure displaying 'Import Data':

Figure 1.4

There are many supported file formats that can be useful for imports and exports. Some of
these standard file formats are as listed below:

Text Files: MATLAB is able to read any text file extensions, such as 'TXT' and 'CSV'.

Spreadsheets: Microsoft excel spreadsheets, 'XLS', 'XLSM', 'XLSX', and more.

Images: 'JPEG', 'TIFF', 'PNG', 'ICO', 'GIF', 'JPG', 'JP2', and many more extensions.

Scientific Data: 'CDF', 'HDF', 'FITS', 'NetCDF', and other formats.

Audio: MATLAB can both read and write audio files, almost all file extensions are
supported, some examples would be: 'AU', 'WAV', 'MP4', and 'M4A'.

Video: MATLAB can both play and record video files, almost all file extensions are
supported, some examples are as follows: 'MPG', 'WMV', 'MP4', and 'MOV'.

As shown in Section 2, you can make a script where you would write your program in, and it
would store all of your code within the script. MATLAB does not save your scripts automatically,
so you will need to save them manually. To save a script, navigate to the 'EDITOR' tab, and click
save, or as a shortcut use control+s (for Windows) and command+s (for Mac). Note that the
desired script in the Editor pane needs to be selected, and that the file extension will be '.m'.
Below is a figure displaying the save button.

Section 4: Importing, Saving, Loading, and Executing In MATLAB

 Introduction to MATLAB Page 7

Figure 1.5

Saving Variables into a 'MAT' file:
To save all workspace variables to a MAT-file, on the 'HOME' tab, in the 'Variable' section,
click 'Save Workspace', and select the directory you want to save the file to.

You also can save workspace variables programmatically using the 'save' function. For example,
to save all current workspace variables to the file Testing.mat, use the following command:

And to save only variables A and B to the file Testing.mat, use the following command:

Loading Variables from a 'MAT' file:
To load saved variables from a 'MAT' file into your workspace, double-click the 'MAT' file in the
Current Folder pane.

You also can load saved variables programmatically, use the 'load' function. For example, to
load all variables from the file Testing.mat, use the following command:

And to load only variables A and B from the file Testing.mat, use the following command:

Running The Program:

 Introduction to MATLAB Page 8

Running The Program:
To run a program you have written inside a script, navigate to the 'EDITOR' tab and under the
'Run' section, click 'Run'. This will first prompt you to save the script, and after the file is saved,
it will compile and run the program.
Another way to quickly run a program without having to save every run is to use the 'Run
Section' button, or use control+enter (for Windows) or command+enter (for Mac). This will
quickly run the section of the program you are trying to run, Below is a figure as an example of
how the 'Run Section' works.

Figure 1.6

Note: The 'clc' function at line 1 will clear the command window, so every time we compile the
program, it will clear everything else that was previously displayed in the command window.

 Introduction to MATLAB Page 9

MATLAB is used in many different fields such as Mathematics, Physics, Engineering, Chemistry,
Biology, Business, and Geoscience.

Note: Do not be intimidated by the examples found in this section. They are meant to give
you an idea on the great variety of tools MATLAB holds.

MATLAB, just like any other calculator, can just solve elementary mathematical
problems by simply inputting the problem in the expected syntax, and MATLAB will
provide an answer.

Elementary Math: Trigonometry, exponentials and logarithms, complex values, rounding,
remainders, discrete math.

MATLAB is used in:

Examples:

Example 1.1: Calculate Sin(0), using MATLAB:

Figure 1.7

Example 1.2: Calculate the Log10(100), using MATLAB:

Figure 1.8

Algebraic and Matrix Operations: Linear equations, eigenvalues, singular values,
decomposition, matrix operations, matrix structure.

Example 1.3: Solve ex + x = 15, using MATLAB:

Section 5: Real World Applications of MATLAB

 Introduction to MATLAB Page 10

Figure 1.9

Calculus and Differential Equations: differentiation, integration, vector analysis, multiple
integration.

Example 1.4: Solve y'-y = x, subject to y(0) = 1, using MATLAB:

Figure 1.10

Example 1.5: The fft function in MATLAB® uses a fast Fourier transform algorithm to
compute the Fourier transform of data. Consider a sinusoidal signal x that is a
function of time t with frequency components of 15 Hz and 20 Hz. Use a time vector
sampled in increments of 150 of a second over a period of 10 seconds. Compute the
Fourier transform of the signal, and create the vector f that corresponds to the
signal's sampling in frequency space. When you plot the magnitude of the signal as a
function of frequency, the spikes in magnitude correspond to the signal's frequency
components of 15 Hz and 20 Hz.

Fourier Analysis: Fourier transforms, convolution, digital filtering.

 Introduction to MATLAB Page 11

Figure1.11

Graphs and Computational Geometry: Directed and undirected graphs, network analysis,
Triangulation, bounding regions, Voronoi diagrams, polygons.

Example 1.6: This code uses the Voronoi function to plot the Voronoi diagram for
10 randomly generated points.

Figure 1.12

Example 1.7: MATLAB is used in Pharmacokinetics to model/simulate the movement
of drugs within the human body. It can simulate the time course profile of drug
exposure, drug efficacy, as well as enzyme and metabolite levels.

Computational Biology: Pharmacokinetics, bioinformatics, systems biology, bioimage
processing, and biostatistics.

Example 1.8: Movement of heat across different types of materials based on its
intensity and duration allows for the creation of efficient and suitable tools for a
variety of functions.

Example 1.9: MATLAB can be used to analyze the waves that are generated by the

Simulating the Real World: Airflow, heat dispersion, sounds waves, friction, fluid
dynamics and more, EEG.

 Introduction to MATLAB Page 12

Example 1.9: MATLAB can be used to analyze the waves that are generated by the
brain, and can produce intelligible data.

Example 1.10: Processing and visualizing weather patterns with MATLAB allows for
better prediction of weather and even potential natural disasters when paired
MATLAB's machine learning capabilities.

Nature Analysis: Analyzing seismic activity, climate change, coral reef growth, and
weather patterns.

Example 1.11: Create an amortization schedule based on duration, mortgage rate,
and payment rate. In addition, MATLAB allows the user to visualize this data by
plotting the outstanding balance, cumulative principle, and cumulative interest.

Cost and Benefit Analysis: Processing the net cost and benefit of different investments
over time.

 Introduction to MATLAB Page 13

Where did the name MATLAB come from?1.

What Language was MATLAB originally created in?2.

By the default, how many panes that MATLAB display? What are the panes called?3.

What was MATLAB originally for?4.

What does the 'quit' command do? Does it automatically save your progress?5.

What is the difference between the 'quit' command and the 'stop' command?6.

'fprintf' is a command that will print out information which we will learn more about in the
future chapters, if we wanted to get help from MATLAB on how to use 'fprintf' what
command would we need to type?

7.

What does the 'helpwin' command do?8.

Which character is used for commenting in MATLAB?9.

Write a line of code to save all the workspace variables into a 'MAT' file named "Practice".10.

Student Exercises

 Introduction to MATLAB Page 14

Chapter 2

Data Types and Basic Evaluations:

Section 1: Numeric Data Types

Section 2: Characters and Strings

Section 3: Conversion and identification

Section 4: Basic Numeric Operations

Section 5: Input and Output

Practice Examples

Student Exercises

Numeric data types are used to assign decimals and whole numbers to a certain variable. In
MATLAB, integers come in four different types that can be signed and unsigned. Signed
integers can hold both positive and negative values but instead hold a smaller range compared
to unsigned integers which can only be positive. Table 2.1 displays all eight integer types as well
as the range of values they can store.

Integer Type Range of Values
int8 -27 to 27-1

int16 -215 to 215-1

int32 -231 to 231-1

int64 -263 to 263-1

uint8 0 to 28-1

uint16 0 to 216-1

uint32 0 to 232-1

uint64 0 to 264-1
Table 2.1

Note that entering a negative integer into an unsigned type returns 0 and entering a
decimal results in a rounded number. Also note that you do not always have to define the
data type of a variable.

In order to store an integer into a variable, the following syntax can be used:

Decimal values can be stored into two different data types (double and single) with the major
difference being that doubles (64-bits) are bigger than singles (32-bits). If a number is stored
without specifying the data type, MATLAB assumes the number is a double.

Section 1: Numeric Data Types

 Data Types and Basic Evaluation Page 15

Much like numerical data types, there are character and string data types. Character data
types store both characters and numbers, but the numbers cannot be used in computations.
To create a character variable, use 'char' before the variable. For example to create a character
variable named "x", we do the following:

Note that placing a space between a series of characters will create an array of characters
which we will learn about in future chapters.
To assign the value "h" to a character named 'height', we do:

String data types store a series of words and characters. The main difference between a string
and a character is that string data types take up more space in memory compared to
characters. Another difference is that, we can add to strings but not to a character. To create a
string variable, we use 'string' before the variable name. For example to create a string variable
named "firstName", we do the following:

To assign the value "Chris" to a string named 'firstName', we do:

The Table below shows how much space in memory strings and characters take:
Note that spaces count as a character.

Integer Type Space in Memory
Strings of length 0-10 132 bytes

Strings of length 11-15 142 bytes

Strings of length 16
and higher

142 bytes + 16 bytes for
each 8 characters or fewer

Characters Each character takes 2 bytes
Table 2.2

Section 2: Characters and Strings

 Data Types and Basic Evaluation Page 16

In MATLAB we can add to strings using the 'append' function, we can concatenate two strings
and combine them into one. For example, if we wanted to greet a person, we would have two
strings. The first string is named 'greeting' and the second is 'name'. The value 'greeting' holds is
"Hello" and the value 'name' holds is "Chris". To concatenate these two strings into a new string
named 'str', we do the following:

Output:
str = "HelloChris"

Appending two strings will not leave a space between them, so we will need to add a space
character in between, in coding terms:

Output:
str = "Hello Chris"

An alternative to appending strings without using the 'append' function is to use the '+'
operator. For example:

Output:
str = "Hello Chris"

 Data Types and Basic Evaluation Page 17

MATLAB allows us to convert different data types, for example you can turn a number into a
string value, and inversely, you can also turn a string into a numerical value. You can use
predefined MATLAB functions to do these conversions, below are the conversion functions:

Converting from a character to a string: If you have a character named 'char' and you
want to convert that to a string named 'str', you can use the 'convertCharsToStrings'
function as seen in the example below:

Converting from a string to a character: If you have a string named 'str' and you want to
convert that to a character named 'char', you can use the 'convertStringsToChars' function
as seen in the example below:

Converting from a string to a double: To convert a string to a double, the string's value
needs to be numerical. If you have a string named 'PI' which holds the value "3.14" and
you want to convert that to a double named 'x', you can use the 'str2double' function as
seen in the example below:

Converting from a double to a string: If you have a double named 'x' which holds the
value "3.14" and you want to convert that to a string named 'PI', you can use the
'num2str' function as seen in the example below:

Section 3: Conversion and Identification

 Data Types and Basic Evaluation Page 18

MATLAB supports all basic mathematical operations such as addition, subtraction,
multiplication, division, exponents, and more. The symbol used for each mathematical
operation can be found in table 2.2.

Symbol Function Name Role
+ plus Addition

- minus Subtraction

* times Multiplication

/ rdivide Division

^ power Exponent

N/A sqrt Square Root

N/A rem Remainder

N/A round Round

N/A mod Modulus
Table 2.3

Note that MATLAB follows the order of operations so that the below code gives an output of
192.

MATLAB will give an error if the user tries to add integers of different types or add integers with
singles.

Figure 2.1

Doubles and integers however, can be added with no issues. The result of a double and an
integer is another integer of the same type.

Section 4: Basic Numeric Operations

 Data Types and Basic Evaluation Page 19

Figure 2.2

The correct use of parenthesis is very important in operations. For example to do

 , it is very

important to use paranthesis to seperate the operations. The incorrect use of paranthesis
effects our answers as shown below:

Figure 2.3

We know the correct answer to this operation is 1.75 but as you can see, without parenthesis
we would get various incorrect answers.

 Data Types and Basic Evaluation Page 20

There are three different ways to output text in MATLAB. The first and most simple way is to
not put semicolons at the end of a statement.
Meanwhile, the same code without ";" results in the output seen in figure 2.3.

Figure 2.4

The second output method involves using the function disp(). Disp can print variables,
numbers, and strings. Adding a number and string with "+" causes them to concatenate to each
other.

Figure 2.5

Adding two numbers in disp can cause them to either concatenate or mathematically add
depending on the situation. If text comes before the addition then the numbers will
concatenate, otherwise they will add. Thus, in figure 2.5, the numbers join into a 22 rather than
add up to a four.

Figure 2.6

On the other hand, the numbers add up to a 4 in figure 2.6 since the text appears after the
addition.

Figure 2.7

The final method for outputting text in MATLAB uses the function fprintf(). Simply printing
string with fprintf shows that the function does not automatically move on to the next line
every time it is used.

Section 5: Input and Output

 Data Types and Basic Evaluation Page 21

Figure 2.8

Inserting line breaks requires special formatting, a list of which can be found in table 2.4.

Format Name Symbol
Single quotation mark ''

Percent character %%

Backslash \\

Alarm \a

Backspace \b

Form feed \f

New line \n

Carriage return \r

Horizontal tab \t

Vertical tab \v
Table 2.4

Variables can still be concatenated using the "+" operator, however, they can also be added
within the string using a special format. Placing "%i" inside the text and the variable name on
the outside allows for this to happen as seen in figure 2.8.

Figure 2.9

Other markers like %i can be found in table 2.5.

 Data Types and Basic Evaluation Page 22

Specifier Description
%c Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in 3.1415e+00)

%E Exponential notation (using an uppercase E as in 3.1415E+00)

%f Fixed-point notation

%g The more compact of %e or %f, as defined in [2]. Insignificant zeros do not print.

%G Same as %g, but using an uppercase E

%i Decimal notation (signed)

%o Octal notation (unsigned)

%s String of characters

%u Decimal notation (unsigned)
Table 2.5

To ask the user for an input, we use the input() command. Input prints the prompt you give it
and waits for the user to enter a value. By placing an 's' we tell the computer that the user will
enter a string.

Figure 2.10

To display a double to a specific number of decimal places using %f, we place the number of
decimal places before the 'f'. To display a number in 2 decimal places, we can do %.2f. The
example below shows how to display the value of 'pi' in different specific number of decimal
places.

Figure 2.11

To round a number to the nearest integer or to a certain amount of decimal places, we can use
the 'round' function, the syntax is as shown below:

 Data Types and Basic Evaluation Page 23

the 'round' function, the syntax is as shown below:

round(x): will round the value of x to the nearest integer.

n > 0: round to n digits to the right of the decimal point.•
n = 0: round to the nearest integer.•
n < 0: round to n digits to the left of the decimal point.•

round(x, n): will round the value of x to n amount of decimal places.

Figure 2.12

 Data Types and Basic Evaluation Page 24

Practice Example 2.1
Create a program that asks the user for the radius of a circle and prints out its area and
circumference.

Solution 2.1

Practice Example 2.2

Create a program that asks the user to input a distance (m) and how long it takes to travel that
distance (s), and it will calculate and print the velocity (m/s) using the following equation:

Practice Example 2.3

Create a program that asks the user to input their weight (N) and assuming they are on Earth, it
will calculate and print their mass (kg) using the following equation:

Practice Examples

 Data Types and Basic Evaluation Page 25

What is the difference between int and double?1.

Create a variable named "price" that is set to be 249.2.

How many bytes would the string "There are 7 days in a week" be?3.

You are given the strings shown below:4.
forecast = "The weather is";
weather = "sunny";
date = "Sunday, June 16th, 2019";

"The weather is sunny today, Sunday, June 16th, 2019"
Write a line of code that will print out the following:

The Earth's gravity is 9.8 m/s2, the variable named 'gravityValue' holds the value of "9.8".
Convert the double to a string and name it "gravityOfEarth."

5.

Create a program that takes the length and width of a rectangle as input and outputs its
perimeter and area.

6.

Create a program that takes in a side and angle of a right triangle and returns the length
of its other sides.

7.

Create a program that accepts temperature input in degrees Fahrenheit, Celsius, or Kelvin
then converts from one to the other.

8.

Write a program that will ask the user to input a velocity (m/s) and a time (s), and will
calculate and print the accelerations (m/s^2). Use the following equation:

9.

Student Exercises

 Data Types and Basic Evaluation Page 26

Chapter 3

Algebraic Operations:

Section 1: Simplifying

Section 2: Expanding

Section 3: Factoring

Section 4: Solving Equations

Section 5: Partial Fraction Decomposition

Student Exercises

Simplification of a mathematical expression is not a clearly defined subject. There is no
universal idea as to which form of an expression is simplest. For example, the following two
mathematical expressions present the same in different forms:

x4 - 2x3 - 13x2 + 14x + 24

(x + 1)(x - 2)(x + 3)(x - 4)

MATLAB allows us to do many algebraic operations, one of many is simplifying. The prebuilt
'simplify' function will perform an algebraic simplification on an expression. The correct syntax
for this function is as follows:

As an example of how to use the 'simplify' function, simplify the expression: sin(x2) + cos(x2)

Initially use the 'syms' command to define the variable x :

As a result, we should get 1.

Section 1: Simplifying

 Algebraic Operations Page 27

Much like simplification, MATLAB also expands expressions. For example, looking at the same
expression from before, the simplified expression, (x + 1)(x - 2)(x + 3)(x - 4) can be expanded
into x4 - 2x3 - 13x2 + 14x + 24. The prebuilt 'expand' function will perform an algebraic expansion
on an expression. The correct syntax for this function is as follows:

As an example of how to use the 'expand' function, expand the expression: (x+1)3

Initially use the 'syms' command to define the variable x :

As a result, we should get x3 + 3x2 + 3x + 1.

In other words, expand(S) multiplies all parentheses in S, and simplifies inputs to functions such
as cos(x+y) by applying standard identities.

Section 2: Expanding

 Algebraic Operations Page 28

Factoring in the simplest terms is finding what to multiply together to get an expression. It is
much like splitting an expression into a multiplication of simpler expressions. For example, to
factor 2y + 6:
Both 2y and 6 have a common factor of 2, therefor 2y + 6 can be written as 2 (y + 3).

MATLAB's 'factor' function returns the most reduced simplified values. In other words factor(x)
returns all irreducible factors of x. If x is an integer, factor returns the prime factorization of x.
If x is a symbolic expression, factor returns the subexpressions that are factors of x. The correct
syntax to use the 'factor' function is as follows:

For example, to factor the integer value 6, we would do:

As a result we would get 2 and 3, as they are the most reduced values from 6, and the
multiplication of 2 and 3 would be 6.

Factoring an expression uses the same syntax, except we have to use the 'syms' function to
define the variables. To factor the expression (x6 - 1), we do the following:

Figure 3.1

You can also factor based on a specific variable. F = factor(x , vars) returns an array of factors F,
where vars specifies the variables of interest. All factors not containing a variable in vars are
separated into the first entry F(1). The other entries are irreducible factors of x that contain one
or more variables from vars.

For example, to factor out x, from y2x2, you can do the following:

Section 3: Factoring

 Algebraic Operations Page 29

Figure 3.2

 Algebraic Operations Page 30

Solving equations first requires knowing how to express equations in MATLAB. In mathematics,
an equation is a statement formed from combining two expressions as a sign of their equality.
While in mathematics the symbol for the equal sign is '=', in MATLAB the equal sign is formed
with '=='. So to store the equation 2x + 1 = 5x + 3 in a variable, we do the following:

For MATLAB to solve this equation, we can use the 'solve' function which follows the below
format

Figure 3.3

An equation like sin(x) = 1 can have an infinite number of solutions. By adding the parameters
'ReturnConditions' and true, the solve function can be modified to handle this.

Figure 3.4

Section 4: Solving Equations

 Algebraic Operations Page 31

Figure 3.4

The new version of the solve function returns three variables. The first variable is the solution.
If the solution repeats then MATLAB displays the solution as an expression with a parameter
and defines the conditions for that parameter. In the case of figure 3.4, the solution to sin(x) ==
1 is π/2 + 2 * π * k where the parameter k must be an integer.

Note that if no solution exists then MATLAB will return an empty object and if MATLAB returns
an empty object with a warning, then there is a possibility that a solution exists.

To solve multivariate equations, we must first store all the equations in a single array (arrays
will be discussed further in a later chapter). For example, the equations, x + y = 1 and 2x + 3y =
5 would be stored in the following way:

Figure 3.5

 Algebraic Operations Page 32

In mathematics, partial fraction decomposition (PFD) occurs when a fraction of polynomials is
converted into the sum of two simpler fractions. MATLAB uses the function named residue to
accomplish this.
Finding the PFD:

Reverting back:

For example, let's say we have the fraction:

We would put all the constants of the numerator into one array and all the constants of the
denominator into another array (while maintaining order) and the full code would be:

Figure 3.6

The output given by figure 3.6 means

Section 5: Partial Fraction Decomposition

 Algebraic Operations Page 33

Simplify the following equation using MATLAB:1.

Expand the following equation in MATLAB:2.

 a.
 b.
 c.
Factor out a, from d.

Factor the following equations using MATLAB:3.

 a.

 b.
 c.

Solve the equations below:4.

 a.

 b.

c.

Find all solutions to the equations below (be sure to state the condition if necessary):5.

 a.

 b.

 c.

Expand the fractions below:6.

Student Exercises

 Algebraic Operations Page 34

Chapter 4

Conditions and Loops:

Section 1: Conditional Statements

Section 2: Basic Boolean Operations

Section 3: Switch, Case, Otherwise

Section 4: For Loops

Section 5: While Loops

Section 6: Try and Catch

Section 7: Useful Commands

Student Exercises

Conditional Statements allow the user to execute a block or line of code based on a provided
condition. The simplest conditional statement is an if-statement. An if-statement can be used
to execute a statement if a certain condition is met. The general simplest syntax is:

For example to write a program that if the value of x is greater than 5, the program will output
2x, we do the following: (Set the original value of x to 10)

Figure 4.1

If-statements can include alternate choices, using the optional keywords elseif or else:

elseif An additional if statement for different conditions

else if none of the conditions in the if and elseif statements are met, then we use else.

For example:

Figure 4.2

NOTE that if-statement will not execute if there is no 'end' at the end of the statement:

Section 1: Conditional Statements

 Conditions and Loops Page 35

Figure 4.3

NOTE that MATLAB is situation-aware, which means if you just type an if-statement with no
code to execute, MATLAB will not do anything:

Figure 4.4

 Conditions and Loops Page 36

The Logical Boolean Operations represents false and true states using the numbers 0 and 1,
respectively. Certain MATLAB functions and operators return logical values to indicate
fulfillment of a condition. You can use those logical values to execute conditional code. Below is
a list of different basic Boolean operations:

Operation Description Syntax

and (short circuiting) Checks if A AND B are both true A && B

or (short circuiting) Checks if either one of A OR B is true A || B

and Checks if A AND B are both true A & B
and(A,B)

not Returns the opposite of A ~A
not(A)

or Checks if either one of A OR B is true A | B
or(A,B)

false Value of false (Numerically 0) false

true Value of true (Numerically 1) true
Table 4.1

Short Circuiting is when second operand is evaluated only when the result is not fully
determined by the first operand, in other words:

A && B
To check if A OR B are both true we do:

Notice that if A is true the end result depend on the value of B, in this case we scanned for both
A and B so there was no short circuiting. But, if A was false, then the operation would return
false as one of the two operands is false, in this case we can say there was short circuiting.

A || B
And to check if either one of A OR B is true we do:

Notice that if A is true, the operation will return true as one of the two operands is true and
there is no need to scan for the second operand, so, there was short circuiting. On the opposite
side, if A was false, then the program would continue to scan for the value of B, in this case
there was no short circuiting.

Write a program that prints out "Access Granted" if both 'username' and 'password' are true. In
this example preset the values of 'username' and 'password' to true:

Section 2: Basic Boolean Operations

 Conditions and Loops Page 37

Figure 4.5

Write a program that will ask the user "What is 2 + 2? " and print out "Correct!", if the answer is
"4" or "four" or "Four".

Figure 4.6

 Conditions and Loops Page 38

Switch statements are like specialized if-else if statements. They check different values a single
variable can hold (called cases) and execute the proper commands based on that. If none of the
cases are met then the default commands are executed (called otherwise). They follow the
pattern below:

The above code would be the same as the following in if-else if format:

NOTE that there is no major difference between if-else if and switch statements, thus their use
is usually based on the style of the programmer.
NOTE that if otherwise is not used and none of the cases are met, then the switch statement is
simply skipped over.

Here is an example that tells you the week name based on number:

Section 3: Switch, Case, Otherwise

 Conditions and Loops Page 39

Figure 4.7

 Conditions and Loops Page 40

Suppose we wanted to assign the variable x to each of the numbers 1 through 5 and then print
each. We could do this:

Figure 4.8

But as you can see, this can be a very difficult task if we needed to do something more
complicated. A for loop allows us to do this in a much cleaner way. The general syntax for a 'for'
loop is:

For example, to do the same task asked above with a for loop, we can do the following:

Section 4: For Loops

 Conditions and Loops Page 41

Figure 4.9

NOTE that ':' will cause incrementation by 1's from the initial value to the end value.

In order for the for loop to go in different step sizes, the following format should be used:

A for loop that counts by 2s from zero to ten can be seen in the below example:

Figure 4.10

Example 4.4.1:
Write a program that will ask the user "Enter an integer between 1-100", and will calculate and
print out the factorial of the entered integer. Assume the user will input a value between 1-100.

 Conditions and Loops Page 42

Figure 4.11

 Conditions and Loops Page 43

The trouble with a for loop is that it executes a statement a certain fixed number of times.
Often in mathematics we wish to execute a statement an unknown number of times until a
criteria is met. In MATLAB a while loop will do exactly that. The syntax for a while loop is:

What happens is that MATLAB enters the while statement and tests the conditions. If they're
true it proceeds through the statements. At the end it goes back to the beginning and tests
again. If the statements (any of them) are ever false it ends the loop. Here is a simple example:

Figure 4.12

Example 4.5.1:
Write a program that will continuously divide an integer by 3, until the result is less than or
equal to 1. The initial integer is 1738. The program will display the final result.
BONUS: Make the program display how many divisions took place.

Figure 4.13

Section 5: While Loops

 Conditions and Loops Page 44

Try and catch blocks are a method of handling exceptions or errors in code. The try segment
runs the commands in it and any errors produced are caught by the catch segment. They follow
this format:

The warning function can be utilized in the catch statement to display warning text in an
emphasized manner. In the following example, the program attempts to use a variable that is
undefined inside a try and catch statement:

Figure 4.14

A more specialized use of try and catch includes specifying the output based on different
exceptions. This can be done by giving catch a parameter then checking
parameter_name.identifier for the name of MATLAB exceptions. The below example gives a
specific action based on the MATLAB exception that occurs:

Figure 4.15

Section 6: Try and Catch

 Conditions and Loops Page 45

Figure 4.15

Another method for error handling is the assert function. Assert accepts a condition and a
string to display as an error if the condition fails.

The following program displays an error because the user fails the assertion test:

Figure 4.16

Lastly, a custom error message can be created with the error command which takes in a
message as its parameter.

Example 4.17 gives a custom error message when the user gives an invalid input.

Figure 4.17

NOTE that error() follows the fprintf() methodology of displaying variables which was discussed
in section 2.5

 Conditions and Loops Page 46

Certain commands can be used to control the flow of loops during iterations.
The break statement can be used to exit a loop which can be seen in the example below where
we set a limit to the number of tickets that can be purchased:

Figure 4.18

Another statement is the continue statement. This interrupts the loop and forces it to move on
to the next iteration. In this example, continue is used to display all odd numbers up to a
certain number.

Section 7: Useful Commands

 Conditions and Loops Page 47

Figure 4.19

Pause statements interrupt the flow of a program for a designated period of time. Using
pause() with no parameter results in an interruption until the user presses a key while using
pause(number) with a number as parameter causes the program to stop for that many
seconds.

 Conditions and Loops Page 48

Write a program that will ask the user "Enter an integer in inches: ", the program then will
convert that integer to centimeters and will ask the user "Calculate and convert that value
to centimeters (you may round to the nearest tenth): ". The program then will compare
the provided answer with the calculated answer and will print "Correct!" if the answers
match, and if not, it will print "Wrong! The correct answer is: [ANSWER]"

1.

What is short-circuiting?2.

Write a program that will ask the user "Enter a username: " and will store that under the
variable username, then the program will ask "Set a password: " and will store that under
the variable password. The program will then say "Account created, you may login now.".

3.

The program will then ask the user "Enter username to login: " and if the input does not
equal username the program will display "Username not found! Try another user name: "
and will ask again till a matching username has been entered"
Once a matching username has been entered, the program will ask the user "Enter the
password for [USERNAME]: ", if the password does not match the previously set
password, the program will display "The password does not match, Try another password:
". Once a matching password is entered, the program will print "Successfully Logged In!".

Write a complete program that prints the sum of numbers between min (inclusive) and
max (inclusive). The program will read the values min and max and display the sum. You
can assume min and max are integer values. For example:

4.

Enter min: 5
Enter max: 10
The sum is 45.

Write a program that outputs the amount of ways numbers between two points
(inclusive) can be used to reach a specific number (repeats are not allowed) by adding
them up. For example, if given number 1 as min and 5 as max, and given 8 as the number
to reach, the output should be "3" because all the ways to reach 8 with numbers between
3 and 5 are:

5.

3 + 5
1 + 3 + 4
1 + 2 + 5

Create a program that will split any given number into each of its digits and display them
separately.

6.

Write a program that accepts a simple polynomial as input and tells the user what its
degree is. For example, an input of '3x^2 + 5x + 10' would result in an output of 2.

7.

Create a program that takes the derivative of simple 3rd degree polynomials and outputs
them.

8.

A skydiver with a mass of 80 kg (including parachute) jumps out of an airplane at an 9.

Be sure to catch and display custom error messages whenever the user submits an invalid
input.

Student Exercises

 Conditions and Loops Page 49

A skydiver with a mass of 80 kg (including parachute) jumps out of an airplane at an
altitude of 4000 m, the initial vertical velocity is 0 m/s. He free-falls for 40 seconds before
opening a parachute. The parachute has a 10 m diameter when completely opened (you
can assume it opens instantaneously). Create a program in MATLAB that calculates and
plots the skydiver’s vertical speed and altitude as a function of time using the following
equations and values. Remember that the skydiver cannot exceed the terminal velocity
and the parachute has a failsafe to open at 1000 m.

9.

Hints: There are different terminal velocities with and without the parachute open,
assume that the parachute opens instantaneously.

Constant values g = 9.81 [m/s^2] (Gravitational Acceleration) p_air = 1.225 [kg/m^3]
(Density of air)

Before Opening: A = 0.5 [m^2] Cd = 0.7

After Opening: A = pi/4 * D^2 [m2] Cd = 1.4

Calculation of Terminal Velocity

Vt=0.99*sqrt((2*mass*gravity)/(p_air*A*Cd))

Calculation of Downward Acceleration (derived from F=m*a)

ai=(1/2)*(p_air/mass)*(V^2_i-1)*(A)*(Cd)-g

Kinematics Equations Setup for a loop

Vi=Vi-1+ai*(delta t) t is time

Yi=Yi-1+Vi-1*(delta t)+(1/2)*ai*(delta t)

Setup the diameter of the parachute, initial altitude, time of opening the parachute, and
the time step as user inputs.

Develop a two player rock–paper–scissors game that loops and holds scores until a player
exits from the game.

10.

 Conditions and Loops Page 50

Chapter 5

Arrays:

Section 1: Arrays

Section 2: Categorical Arrays

Section 3: Cell Arrays

Section 4: Tables

Section 5: Structures

Section 6: Conversions

Student Exercises

Arrays are the fundamental representation of information and data in MATLAB®. You can
create common arrays and grids, combine existing arrays, manipulate an array's shape and
content, and use indexing to access array elements. Below is a table of different commands:

Commands Description Syntax

zeros Create array of all zeros with a size (n x n) or
(n x m)

zeros
zeros(n)
zeros(n,m)

ones Create array of all ones with a size (n x n) or
(n x m)

ones
ones(n)
ones(n,m)

rand Uniformly distributed random numbers with a
size (n x n) or (n x m). Values are from 1 to max

randi(max, n)
randi(max, n,m)

true Returns an array of size (n x n) or (n x m) of
logical 1's (true)

true(n)
true(n,m)

false Returns an array of size (n x n) or (n x m) of
logical 0's (false)

false(n)
false(n,m)

eye Returns an (n x n) or
(n x m) identity matrix with ones on the main

diagonal and zeros elsewhere.

eye(n)
eye(n,m)

diag Returns a square diagonal matrix with the
elements of vector v on the main diagonal.

diag(v)

cat cat(dim, A, B) concatenates B to the end
of A along dimension dim when A and B have
compatible sizes

cat(dim, A, B)

horzcat horzcat(A, B) concatenates B horizontally to the
end of A when A and B have compatible sizes

horzcat(A, B)

vertcat vertcat(A, B) concatenates B vertically to the
end of A when A and B have compatible sizes

vertcat(A, B)

repelem Repeats each element of vector V, n times into
a new vector.

repelem(v,n)

repmat Returns an (n x n) or (n x m) array containing
of A in the row(n) and column(m) dimensions

repmat(v ,n)
repmat(v ,n, m)

magic Creates an array of size (n x n) with values 1-n2 magic(n)
Table 5.1

There are different ways to creating arrays, look at the examples below:

Section 1: Arrays

 Arrays Page 51

Command Output

V = [1 2 3] 1 2 3

V = [1 2 3; 4 5 6] 1 2 3
4 5 6

V = [1:5] 1 2 3 4 5

V = [1:3;4:6] 1 2 3
4 5 6

zeros(2) 0 0
0 0

Ones(2) 1 1
1 1

randi(10,1,2) 3 7

true(2) 1 1
1 1

eye(3) 1 0 0
0 1 0
0 0 1

magic(3) 8 1 6
5 9 2
3 7 4

Table 5.2

Concatenating arrays allows you to add two arrays to each other, for example:

Figure 5.1

NOTE that dim '2' concatenates horizontally and '1' is vertically.

Indexing has an important role in MATLAB and creating arrays, for example if you wanted to
create an array from 1-20, you could do the following:

 Arrays Page 52

Figure 5.2

And to create an array from 1-50 with an index of 3, we would do the following:

Figure 5.3

Adding to an array is very common, and in MATLAB it is very simple to do:

Figure 5.4

Note that 'a(11)' is addressing the 11th element in vector a, and adding the value '11' to it.

Replacing an element in an array is very similar to adding. First, you address the element, and
then you replace the value of that element. For example, to replace the value of 5 with a 0, we
do the following:

 Arrays Page 53

Figure 5.5

Removing from an array: The easiest way to remove a row or column of a matrix is setting
that row or column equal to a pair of empty square brackets []. For example to remove the 5th
element from the above example, we can do this:

Figure 5.6

As another example, to create a 4x4 array and remove the 4th row and 4th column from it, we
do as follows:

 Arrays Page 54

Figure 5.7

In this example, we first removed all elements in the 4th row and then removed all elements in
the 4th column.
Note that ':' refers to all elements in that row or column.

 Arrays Page 55

Categorical arrays are a data type that can store a set of categories and are useful when
holding nonnumerical data. The simplest way to use them is through the following format:

Simply displaying the value of cat would display the array it holds, however, utilizing the
categories() function on it gives us a list of all the categories. Here is an example that records
answers to a true/false test:

Figure 5.8

A second parameter can be added which tracks all possible values that can occur in the dataset
even if they have not appeared yet. In the example below, "neither" is not an answer however
using the categories() function still gives us it as an option because we told it, "neither" was a
possible category:

Section 2: Categorical Arrays

 Arrays Page 56

Figure 5.9

You can give MATLAB a key to convert from integer data to categories by specifying a second
and third parameter that match. In the below figure, 0 is set to false, 1 is set to true, and -1 is
set to neither. MATLAB converts the integers in the variable answers into the categories
specified in the third parameter.
NOTE that the second and third parameter must follow the same format and have the same
number of elements, otherwise MATLAB will give an error.

Figure 5.10

 Arrays Page 57

Categories can be given ordinal values by adding the fourth and fifth parameter 'Ordinal' and
true. In the below example, old is given 0, older is given 1, and oldest is given 2, thus giving the
categories the following order old < older < oldest:

Figure 5.11

The below table displays a set of useful commands and functions:

Function Description Syntax

addcats Adds more categories to the array. addcats(cat1, cat2)
addcats(cat1, cat2, 'Before',
cat_name)
addcats(cat1, cat2, 'After',
cat_name)

removecats Removes categories from the array. removecats(cat)
removecats(cat, cat_old)

mergecats Merges categories from the array. mergecats(cat, cat_old)
mergecats(cat, cats_old,
cat_merge_to)

renamecats Renames categories from the array. renamecats(cat, names_new)
renamecats(cat, names_old,
names_new)

setcats Sets new categories into the array. setcats(cat, cat_new)
Table 5.3

Addcats adds the specified categories to the category array, it does NOTE add to the array's
values. The before and after parameters can be used to specify the ordinal value of the new
categories (this only works in categorical arrays that have ordinal set to true).

 Arrays Page 58

Figure 5.12

Without the second parameter removecats removes all unused categories. The second
parameter specifies what category should be removed. The second version is shown below:

Figure 5.13

Mergecats allows for a category to be converted to another category when it only uses two
parameters. The second version allows for any number of categories to be converted into a
new category. Both of these versions are shown in the figure below:

 Arrays Page 59

Figure 5.14

With only two parameters, renamecats forces the user to rename all categories. The third
parameter allows the user to choose a specific category to rename.

Figure 5.15

Setcats creates a new categorical array that contains all categories in the second parameter,
but it only keeps values that existed in the original array and are a category in the second
parameter. All other values become undefined.

Figure 5.16

 Arrays Page 60

Cell arrays are a datatype where each element is called a cell and each cell can contain its own
datatype. They are defined with curly brackets {}, commas indicate a change in column while
semicolons indicate a change in row. An example can be seen below:

Figure 5.17

Note that you can have different datatypes in different cells of the same cell array.

The cell function can be used to create an empty cell array of n-dimensions which can then be
filled up with a for loop. The below figure shows an example of this with a 3x3 cell array.

Figure 5.18

Accessing cell arrays is divided into two different methods. Use parenthesis () to get a set of
cells from the array, and use curly braces {} to obtain the content of cells. Differences between
indexing with parenthesis and curly braces can be seen in the example below:

Section 3: Cell Arrays

 Arrays Page 61

Figure 5.19

Additionally, it's important to note that attempting to set values to larger indices that do not
exist results in MATLAB adjusting the cell array size as shown in the figure below:

Figure 5.20

 Arrays Page 62

Tables hold categories of data by storing columns of arrays, each of which can store a different
datatype. All columns must have the same number of rows. In similar fashion to cell arrays,
parenthesis can be used to access subtables of data while curly braces can be used to access
specific values in a table. In its most simple form, the function table can be used with different
variables. The figure below shows a table holding measurements for three different fruits and
demonstrates how each variable in the table can be accessed through dot indexing.
Note that each table column can consist of a different number of columns.

Figure 5.21

An empty table can be made by specifying the size, variable type, and variable name of the
table following this format:

Here is an example of this in use:

Figure 5.22

Setting values is similar to cell arrays, in that the size of the table will be expanded if an index
that is too large is used. The example below shows this because while the table is at first 3x3, it
grows to a 4x4 when the user attempts to add a fourth row and column.

Section 4: Tables

 Arrays Page 63

Figure 5.23

 Arrays Page 64

Structures are a type of array that can hold groups of information called fields. Each field can
hold a different data type and can be accessed through dot indexing which was mentioned
briefly in section 5.4. Setting a structure follows this format:

Here it is in use:

Figure 5.24

The function rmfield removes a field from a structure, its format is as follows:

Here is an example of it:

Figure 5.25

Section 5: Structures

 Arrays Page 65

MATLAB allows us to swiftly convert from different array types; we can convert between
numeric arrays, character arrays, cell arrays, structures, or tables.

 Table 5.3

Function Description Syntax

int2str Converts integers to characters int2str(n)

mat2str Converts matrix to characters mat2str(n)
mat2str(n, precision)

num2str Converts numbers to characters num2str(n)
num2str(n, precision)

str2double Converts strings to double precision values str2double(str)

str2num Converts character array or a string to numerical array str2num(chr)

table2array Converts table to homogenous array table2array(tble)

table2cell Converts table to cell array table2cell(tble)

table2struct Converts table to structure array table2struct(tble)

array2table Converts homogenous array to table array2table(A)

cell2table Converts cell array to table cell2table(C)

struct2table Converts structure array to table struct2table(S)

cell2mat Converts cell array to matrix array cell2mat(C)

cell2struct Converts cell array to structure array cell2struct(C)

mat2cell Converts matrix array to cell array mat2cell(A)

num2cell Converts numeric array to cell array num2cell(A)
num2cell(A, dimension)

struct2cell Converts structure array to cell array struct2cell(S)

Example 5.6.1: Converting integer array to string

Figure 5.26

Section 6: Conversions

 Arrays Page 66

Figure 5.26

Example 5.6.2: Converting string to numerical array

Figure 5.27

Example 5.6.3: Converting a table to a cell array

Figure 5.28

Example 5.6.4: Converting homogenous array to table

 Arrays Page 67

Figure 5.29

Example 5.6.5: Converting structure array to cell array

Figure 5.30

 Arrays Page 68

Write a program that finds the mean of an array of numbers entered by the user.1.

Create a program that will loop through an array of integers and add one to each odd
element.

2.

Create a 10x10 array using magic(10) and use a loop to continuously remove from its columns
and rows until we have a 5x5 array

3.

Write a program that will read an array of any size, removing all values that are less than 60,
and replaces all values that are from 60-69 with 70.

4.

This program will receive an array of 2-dimensional coordinates and output a line that passes
through all points. If a line cannot pass through all points then the program will instead
output 'impossible.'

5.

Create a program that will store the name and grade of a set of students into a table and
displays them at the end.

6.

Write a program that accepts an array of numbers and attempts to find between which
elements at least one minimum or maximum exists.

7.

Create a program that holds a database of different elements, their mass, their charge, and
their half-life (if they have one). Use structures for this and repeatedly ask the user if they
wish to enter a new entry until the user is done. When done, output a table of all the
elements.

8.

Student Exercises

 Arrays Page 69

Chapter 6

Classes and Functions:

Section 1: Functions

Section 2: Classes

Section 3: Enumeration

Section 4: Recursion

Student Exercises

A function is a group of statements that together perform a task. In MATLAB, functions are
defined in separate files. Functions can have both single and multiple inputs and outputs,
meaning, a function will take at least one input value and will output at least one value. The
syntax to use functions is:

The code above will declare a function named 'myFunction' and will take 'd, e, f, …' as inputs
and 'a, b, c, …' as output values.
Note that valid function names begin with an alphabetic character, and can contain letters
numbers, and underscores.
For example, to write a function that will take the average of a series of numbers, we can do:

Figure 6.1
Note that sum(x), will sum all of the values of x. And length(x), will return how many values are
in x.

And to write a function that will accept two values and output two values, we do:

Section 1: Functions

 Classes and Functions Page 70

Figure 6.2

In MATLAB there is a 'return' command, which will exit the function. For example, to write a
function that exits if n = 2, we can do:

 Classes and Functions Page 71

A MATLAB class definition is a template whose purpose is to provide a description of all the
elements that are common to all instances of the class. The basic purpose of a class is to define
an object that encapsulates data and the operations performed on that data.
For example, SimpleClass defines a property and two methods that operate on the data in that
property:

Value — Property that contains the data stored in an object of the class
Subtract— Method that subtracts 2 from the value
Add— Method that adds 'n' to the value

To create an object of the class using the class name we do:

To assign a value to a property, we can do:

To read a value of a property, we do:

To call a method on object a that we just created, we do:

Classes can define a special method to create objects, called a constructor. Constructor
methods enable you to pass arguments to the constructor, and to validate and assign property

Section 2: Classes

 Classes and Functions Page 72

methods enable you to pass arguments to the constructor, and to validate and assign property
values. Here is a constructor for the SimpleClass class:

Note The name of the class and the constructor should be the same.
Note that adding a constructor will make it easier to create objects, now to create an object,
we can alternatively do:

Class Attributes1.
Method Attributes2.
Property Attributes3.
Event Attributes4.

Class members are the properties, methods, and events that define the class. Attributes modify
the behavior of classes and the members defined in the class-definition block. For example, you
can specify that methods are static or that properties are private.

Class Attributes: All classes support the attributes listed in the following table. Attributes
enable you to modify the behavior of class. Attribute values apply to the class defined within
the 'classdef' block. The syntax is:

 Classes and Functions Page 73

Attribute Name Class Description

Abstract logical

(default = false)

If specified as true, this class is an abstract class
(cannot be instantiated).

AllowedSubclasses meta.class object or
cell array
of meta.class objects

List classes that can subclass this class. Specify
subclasses as meta.class objects in the form:
A single meta.class object•
A cell array of meta.class objects. An empty cell
array, {}, is the same as a Sealed class (no
subclasses).

•

ConstructOnLoad logical

(default = false)

If true, MATLAB calls the class constructor when
loading an object from a MAT-file. Therefore,
implement the constructor so it can be called with
no arguments without producing an error.

HandleCompatible logical

(default = false) for
value classes

If specified as true, this class can be used as a
superclass for handle classes. All handle classes
are HandleCompatible by definition.

Hidden logical

(default = false)

If true, this class does not appear in the output of
the superclasses or help functions.

InferiorClasses meta.class object or
cell array
of meta.class objects

Use this attribute to establish a precedence
relationship among classes. Specify a cell array
of meta.class objects using the ?operator.

Sealed logical

(default = false)

If true, this class cannot have sub classes

Table 6.1

Method Attributes: Specifying attributes in the class definition enables you to customize the
behavior of methods for specific purposes. Control characteristics like access, visibility, and
implementation by setting method attributes. Subclasses do not inherit superclass member
attributes. With the syntax of:

 Classes and Functions Page 74

Attribute Name Class Description

Abstract logical
default = false

If true, the method has no implementation. The method
has a syntax line that can include arguments that
subclasses use when implementing the method:
Subclasses are not required to define the same number
of input and output arguments. However, subclasses
generally use the same signature when implementing
their version of the method.

•

The method can have comments after the function line.•

Access enumeration,
default = public

Determines what code can call this method:
public — Unrestricted access
protected — Access from methods in class or subclasses
private — Access by class methods only (not from
subclasses)

Hidden Logical
default = false

When false, the method name shows in the list of
methods displayed using
the methods or methodsview commands. If set to true,
the method name is not included in these listings and is
method does not return true for this method name.

Sealed logical
default = false

If true, the method cannot be redefined in a subclass.
Attempting to define a method with the same name in a
subclass causes an error.

Static Logical
default = false

Specify as true to define a method that does not depend
on an object of the class and does not require an object
argument. Use the class name to call the
method: classname.methodname or an instance of the
class: obj.methodname

Table 6.2

Property Attributes: Specifying attributes in the class definition enables you to customize the
behavior of properties for specific purposes. Control characteristics like access, data storage,
and visibility of properties by setting attributes. Subclasses do not inherit superclass member
attributes. The syntax is:

 Classes and Functions Page 75

Attribute Name Class Description

AbortSet logical

default = false

If true, MATLAB does not set the property value if
the new value is the same as the current value.
MATLAB does not call the property set method, if
one exists.

Abstract logical

default = false

If true, the property has no implementation, but a
concrete subclass must redefine this property
without Abstract being set to true.
Abstract properties cannot define set or get access
methods.

•

Abstract properties cannot define initial values. •
All subclasses must specify the same values as the
superclass for the
property SetAccess and GetAccess attributes.

•

Abstract=true use with the class
attribute Sealed=false (the default).

•

Access enumeration, default
= public

• Use Access to set both SetAccess and GetAccess to
the same value. Query the values
of SetAccess and GetAccess directly (not Access).

public – unrestricted access

protected – access from class or subclasses

private – access by class members only (not
subclasses)

Constant logical

default = false

Set to true if you want only one value for this
property in all instances of the class:
Subclasses inherit constant properties, but cannot
change them.

•

Constant properties cannot be Dependent.•
SetAccess is ignored.•

Dependent logical

default = false

If false, property value is stored in object. If true,
property value is not stored in object. The set and
get functions cannot access the property by
indexing into the object using the property name.

MATLAB does not display in the command window
the names and values of Dependentproperties that
do not define a get method (scalar object display
only).

GetAccess enumeration

default = public

public — unrestricted access

protected — access from class or subclasses

private — access by class members only (not from
subclasses)

 Classes and Functions Page 76

subclasses)

MATLAB does not display in the command window
the names and values of properties
having protected or private GetAccess or properties
whose Hidden attribute is true.

GetObservable logical

default = false

If true, and it is a handle class property, then you
can create listeners for access to this property. The
listeners are called whenever property values are
queried.

Hidden logical

default = false

Determines if the property can be shown in a
property list (e.g., Property Inspector, call
to set or get, etc.).

MATLAB does not display in the command window
the names and values of properties
whose Hidden attribute is true or properties
having protected or privateGetAccess.

NonCopyable logical

default = false

Determine if property value can be copied when
object is copied.

You can set NonCopyable to true only in handle
classes.

SetAccess enumeration

default = public

public — unrestricted access

protected — access from class or subclasses

private — access by class members only (not from
subclasses)

immutable — property can be set only in the
constructor.

SetObservable logical

default = false

If true, and it is a handle class property, then you
can create listeners for access to this property. The
listeners are called whenever property values are
modified.

Transient logical

default = false

If true, property value is not saved when object is
saved to a file.

Table 6.3

Event Attributes: The following table lists the attributes you can set for events. To specify a
value for an attribute, assign the attribute value on the same line as the event keyword. For
example, all the events defined in the following events block have protected ListenAccess and
private NotifyAccess.

 Classes and Functions Page 77

Attribute Name Class Description

Hidden logical
default = false

If true, event does not appear in list of events returned
by events function (or other event listing functions or
viewers).

ListenAccess Enumeration
default = public

Determines where you can create listeners for the event.
public — Unrestricted access
protected — Access from methods in class or subclasses
private — Access by class methods only (not from
subclasses)

NotifyAccess Enumeration
default = public

Determines where code can trigger the event
public — Any code can trigger event
protected — Can trigger event from methods in class or
derived classes
private — Can trigger event by class methods only (not from
derived classes)

Table 6.4

There are two kinds of MATLAB classes—handle classes and value classes:

Value classes represent independent values. Value objects contain the object data and do not
share this data with copies of the object. MATLAB numeric types are value classes. Values
objects passed to and modified by functions must return a modified object to the caller.

•

Handle classes create objects that reference the object data. Copies of the instance variable
refer to the same object. Handle objects passed to and modified by functions affect the object
in the caller’s workspace without returning the object.

•

Class definitions are blocks of code that are delineated by the classdef keyword at the
beginning and the end keyword at the end. Files can contain only one class definition. The
following diagram shows the syntax of a classdef block. Only comments and blank lines can
precede the classdef keyword.

 Classes and Functions Page 78

Figure 6.3

 Classes and Functions Page 79

Enumeration is a data type in MATLAB that allows for a set of values to be represented through
categories. An enumeration class is created by adding an enumeration block inside a class. This
can be useful when we want a limited number of choices rather than the infinite number of
choices numbers provide. For example, days of the week can be represented with numbers,
however, it is much more readable to represent them through enums as shown below:

Figure 6.4

Figure 6.5

Figure 6.4 creates the enumeration block and defines a function which checks if the current
value is Monday. The next figure picks two different days and runs the function on them.

Numeric values can be assigned to enums as well by following the following class format:

Section 3: Enumeration

 Classes and Functions Page 80

Here is an example using the days of the week again:

Figure 6.6

Here is the class in action:

Figure 6.7

 Classes and Functions Page 81

Loops are not the only method of iteration. Recursion is an algorithm that accomplishes a loop
by repeating itself until a condition is met. In programming, this involves a function calling itself
until it is forced to stop. Perhaps the most common example of recursion is the factorial which
can be found below:

Figure 6.8

The function multiplies its parameter X by the result of calling itself with the parameter X-1
until X reaches one. The table below will present how the factorial of 4 is calculated step by
step using this method:

X Fact(X)

4 4 * Fact(3)

3 3 * Fact(2)

2 2 * Fact(1)

1 1

Result 4 * 3 * 2 * 1
Table 6.5

Another example with recursion could involve using it to reverse a string:

Section 4: Recursion

 Classes and Functions Page 82

Figure 6.9

This one works by continuously taking letters from the end of the word until we run out of
letters. The table once again shows what is happening step by step.

X Reverse(X)

MATLAB B + Reverse(MATLA)

MATLA A + Reverse(MATL)

MATL L + Reverse(MAT)

MAT T + Reverse(MA)

MA A + Reverse(M)

M M

Result B + A + L + T + A + M
Table 6.6

 Classes and Functions Page 83

Write a function that will find and return the minimum and maximum values in an array as
well as the min and max's index in the array. Example:

1.

Enter array: [5, 3, 7, 10]
The maximum value is 10 at index 4.
The minimum value is 3 at index 2.

Define a class that contains the days of the week, and will be able to output the day after
the entered day. For example, if the user inputs Monday, the program will output Tuesday.

2.

Using recursion, create a function, where given an array and a number, it checks for the first
instance of the number in the array and which index it is located at.

3.

Create a function that given a, b, and c, will solve the quadratic formula.4.

Create a function that checks if a word is a palindrome (the same when written backwards)
using recursion.

5.

Construct a function that accepts an array of M1xN1 and an array of M2xN2 and outputs
their dot product. If the two matrices are not compatible, then the function should return a
warning.

6.

Construct a class that has a variety of functions based on which variables (time,
acceleration, initial velocity, final velocity, and displacement) the user submits to solve for
another variable (hint: use the kinematic equations and assume constant acceleration).

7.

Given a recursive, exponential formula a(n), an initial value a(1), and a value for n, create a
function to find a(n) using recursion. A(n) will follow the following basic format:
 a n

8.

Create a class that makes true and false tests and stores them for later use. When a new
Test is created, the user can call a method that takes in a question and answer. An array of
all questions and answers in that test will be recorded. The user can then run the Test with
another function resulting in a question to be displayed followed by the computer waiting
for the user to answer. At the end of the test, the user's score is displayed.

9.

Student Exercises

 Classes and Functions Page 84

Chapter 7

Data and Statistics:

Section 1: Basic Statistical Function

Section 2: Importing Data

Section 3: Plotting Data

Section 4: Analyzing Data

Student Exercises

MATLAB has predefined statistical functions that each perform a task. Some of the functions are as
shown in the table below:

Function Description

max Maximum value

mean Average or mean value

median Median value

min Smallest value

mode Most frequent value

std Standard deviation

var Variance, which measures the spread or dispersion of the values
Table 7.1

For example, you are given an array of 22 students' grades called 'a', and are trying to find the highest
and lowest grades. You can use the MATLAB functions 'max' and 'min' respectively as follows:

Figure 7.1

And to get the average and median grades of the class, we can do:

Figure 7.2

Section 1: Basic Statistical Functions

 Data and Statistics Page 85

Figure 7.2

To get the most frequent grade of the class we can use the 'mode' function:

Figure 7.3

The functions 'std' and 'var' allow us to get the standard deviation and variance respectively:

Figure 7.4

 Data and Statistics Page 86

In MATLAB there are different methods of importing data, you can import data from a disk file or the
system clipboard.
To import data from a file, do one of the following:

On the Home tab, in the Variable section, select Import Data•

Figure 7.5
Double-click a file name in the Current Folder browser.•

Figure 7.6

Call uiimport: uiimport(filename) opens the file specified in filename using either Import Tool or Import
Wizard depending on the file type. For spreadsheet and text files, uiimport opens the file using Import
Tool. For all other file types, such as image, audio, or MAT-files, uiimport opens the file using Import
Wizard.

•

To import data from the clipboard, do one of the following:

On the Workspace browser title bar, click the drop down, and then select Paste.•

Figure 7.7

Section 2: Importing Data

 Data and Statistics Page 87

Previously in the chapter we learned about importing data into MATLAB. MATLAB allows us to
seamlessly plot 2d graphs. We can use the plot(x,y) function to plot a data. For example to plot
a data of monthly sales in MATLAB, we can do the following.

Figure 7.8

Note that 'months' and 'sales' are representing x and y respectively. Also note that xlabel and
ylabel are used to label the xy-axis, and that title is used to title the graph.

If you are trying to plot multiple sales on one graph to compare and see the differences of the
two, you can do the following:

Section 3: Plotting Data

 Data and Statistics Page 88

Figure 7.9

Note that in plot we used the same variable for months, but different variable for sales. Also
note that legend will label the different plots in a box on the upper right corner of the graph.

 Data and Statistics Page 89

In this section, we will analyze a single dataset using multiple tools MATLAB gives us. This will
not be a fully comprehensive guide to every or even most statistical tools MATLAB has to offer
but it will give a good general overview.
This section will use one of MATLAB's default datasets called gas which can be loaded with the
command load gas. Before we begin testing, we want to make sure the dataset is normally
distributed. MATLAB contains multiple tests of normality, in this example, we will use the
Anderson-Darling test called adtest(). As a general reminder, the null hypothesis in this test is
that the sample population is normal while the alternate is that it is not, thus a value of zero
would mean the null hypothesis cannot be rejected and that the dataset is probably normal.
The function normplot() also allows us to look for normality in a more visual way.

Figure 7.9

The data points in the graph appear to be normally distributed and the normality test failed to
reject both datasets.
We can test if the mean price ($1.15) across the first dataset is statistically close to that of the
second dataset with a t-test using the function ttest().

Section 4: Analyzing Data

 Data and Statistics Page 90

Figure 7.10

Our results reject the null hypothesis, meaning the second dataset's mean is different from the
first's.
Finally, we can visualize all this with a boxplot using the boxplot() command.

Figure 7.11

The boxplots shows the distribution of the data, the median, as well as any outliers, making it
one of the best methods for analyzing data visually.

 Data and Statistics Page 91

Write a program that will calculate the Grade Point Average (GPA) of a student.1.

What does uiimport do?2.

(a) Create a scatter plot of two arrays called "Engr Grades" and "Months" which will plot
the different grades during different times of a semester. (b) On the same plot add
another array called "CompSci Grades". The plot will compare the Engineering students'
grades with the Computer Science students' grades.

3.

Find the region with the lowest and the region with the highest standard deviation in
MATLAB's flu sample dataset.

4.

Display the distribution of MATLAB's data samples of bacteria counts in different
shipments of milk (hogg) in graphic form.

5.

Organize all exam grades in the MATLAB sample data examgrades into a table of A's, B's,
Cs, D's, and E's.

6.

Create a function that accepts an array of numbers as data and other graphing features
such as titles and labels, then plots the graph for the user.

7.

Create a function that given an array of numbers, creates a plot with the data points as
well as a line of best fit.

8.

Be sure to use appropriate titles, labels, and legends in all plots.

Student Exercises

 Data and Statistics Page 92

Chapter 8

Section 1: Plotting Basics

Section 2: Rectangular

Section 3: Parametric

Section 4: Polar

Section 5: Cylindrical

Section 6: Spherical

Student Exercises

Coordinate Systems:

Plotting can be achieved by either giving MATLAB a set of points or an equation. The function
plot() can display coordinates when given an array of x-values and y-values as well as a third
parameter which controls whether the lines are connected not.

In this case, a dot in the third parameter causes the coordinates to be separated while a dash
connects them. Other line styles include '--' which creates dashed lines, ':' which creates a faded
line, and 'o' which creates dots that are empty circles. Below is an example of a single format:

 Figure 8.1

Multiple lines can be displayed by simply inserting another set of parameters. Also note worthy
is that adding certain letter prefixes like 'r', 'g', and 'b' before the line style changes the line's
color.

Section 1: Plotting Basics

 Coordinate Systems Page 93

 Figure 8.2

Adding labels is possible through the use of the functions title(), ylabel(), and xlabel().

Figure 8.3

Line four in the code prints changeable properties of the dashed (first) line, these properties
include:

 Coordinate Systems Page 94

For example, one could change what each data point looks like and the width of each line like
this:

 Figure 8.4

Grid can be displayed with grid on and the limit for the x and y-axis can be set with the function
axis(). Axis() takes in an array in the following format: axis([x-min x-max y-min y-max])

 Coordinate Systems Page 95

 Figure 8.5

 Coordinate Systems Page 96

Rectangular equations can be displayed by giving the x parameter of plot() a range of x-values
and the y parameter an equation in terms of x. Before we learn to plot this, we need to learn
about the difference between vector and elementwise operations in MATLAB.
Vector operations are used when working with multiple matrices/vectors while elementwise
operators deal with scalers. Elementwise operators follow the same syntax as the vector ones,
except that they have a dot before them, so the elementwise equivalent for multiplication
would be ".*".
This comes into play when we for example, attempt to square the x parameter in a quadratic
equation. The regular exponent sign would cause an error because MATLAB would attempt to
multiply the non-square matrix x by itself thus creating a dimension error.
By using ".^" we tell MATLAB to multiply each element of x by itself. The below figure shows
MATLAB plotting a quadratic equation.

 Figure 8.4

MATLAB also supports the plotting of other mathematical functions such as sine and cosine as
well.

Section 2: Rectangular

 Coordinate Systems Page 97

 Figure 8.5

 Coordinate Systems Page 98

Parametric equations can be handled similarly to how rectangular ones are except now the
independent variable for both the functions x and y is a new variable named t. Figure 8.5
utilizes parametric equations to plot a circle as an example.

 Figure 8.5

Even though the plot is a circle, MATLAB appears to display it as an ellipse. This occurs because
the data units of the two axis is not equal and can be fixed by adding the line axis equal or axis
square at the very end of the program.

Section 3: Parametric

 Coordinate Systems Page 99

square at the very end of the program.

 Figure 8.6

 Coordinate Systems Page 100

While rectangular and parametric could be plotted using the same function, polar equations
will require a new one named polarplot(). Polarplot accepts the same parameters the plot()
function does, however, it utilizes a polar coordinate system when displaying rather than a
rectangular one. This means that the coordinates are no longer x and y-based but instead use
angle and radius from the origin. Therefore, if we want to draw a circle, we simply go from zero
to 360 degrees with a constant radius:

 Figure 8.6

Note that polarplot() accepts radians and not degrees in theta.
However, the plot in figure 8.6 does not display a circle with a radius of 2 because while theta is
an array, rad is only a number so only the very first point (theta = 0 and rad = 2) would get
plotted. To turn the radius into an array of the same size as theta we simply multiply the radius
by an array of ones with the length of theta.

Section 4: Polar

 Coordinate Systems Page 101

 Figure 8.7

The axis() function works for polar graphs as well but its parameters now are axis([theta0
theta1 radius0 radius1]). For example, the following shows a polar graph with a minimum
degree of zero and a maximum of 270 degrees and a minimum radius of -5 to a maximum of 5:

Figure 8.8

Note that unlike polarplot(), axis() uses degrees when referring to theta.

 Coordinate Systems Page 102

Cylindrical coordinates are a generalization of two-dimensional polar coordinates to three
dimensions by superposing a height (z) axis. In a cylindrical coordinate system either r or p is
used to refer to the radial coordinate and either theta or ϕ to refer to the azimuthal
coordinates. For instance (r, theta, z) or (p, ϕ, z) are used as cylindrical coordinates.

The most simple way to plot a cylinder is typing the command cylinder. You can change the
radius of the cylinder by using the syntax cylinder(r), where r represents the radius. For
example, to create a cylinder with radius 2π, we do:

Figure 8.9

To generate other figures such as a cone in MATLAB, you will need to work with cylindrical
coordinates, although this is more complicated than just plotting a cylinder.

 Figure 8.10

First, we define what r and theta are, in this example r is from 0 to 30 with an index of 0.7, and
theta is also from 0 to 30 with an index of 2π. Next we define a new variable called z, which
based on radius r also increases from 0.4 to 30 with intervals of 0.4 (starts from small radius

Section 5: Cylindrical

 Coordinate Systems Page 103

based on radius r also increases from 0.4 to 30 with intervals of 0.4 (starts from small radius
and increases as z increases. Finally, we can plot using surf, we multiply all values of radius by
cos(theta) for x and by sin(theta) for y, and used z for height axis. The syntax to using surf is;
surf(X, Y, Z).

In other cases, we sometimes have to convert from cylindrical coordinates to cartesian. For
example:

Figure 8.11

We created a vector for theta and z.1.
Created a meshgrid from theta and z.2.
Wrote a function R(TH,Z).3.
Converted from cylindrical to cartesian.4.
Plotted the result using mesh Note that we could also have used surf to plot.5.

 Coordinate Systems Page 104

Spherical coordinates are a system of curvilinear coordinates that are natural for describing
positions on a sphere or spheroid. Define theta to be the azimuthal angle in the x y-plane from
the x-axis with (0<=theta<2pi). phi to be the polar angle from the positive z-axis with 0<= phi
< pi, and r to be the radius from a point to the origin.

To plot a sphere we first need to define x, y, and z as coordinates of a sphere. For example, to
plot a sphere with its origin at (0, 1, -3), we can do:

 Figure 8.12

To plot more complicated figures using the spherical coordinate system, we approach very
similarly to cylindrical coordinate system. Lets look at an example below:

Figure 8.13

Section 6: Spherical

 Coordinate Systems Page 105

Figure 8.13

We set the radius R to 10.1.
We defined Phi to be from -π

 to π

 .2.

We defined Theta to be from 0 to π.3.
Created a meshgrid from Phi and Theta.4.
Converted from spherical coordinate system to cartesian.5.
Plotted the result using surf.6.

 Coordinate Systems Page 106

Create a function that accepts a rectangular equation and other MATLAB plot properties
then plots the given curve.

1.

Create a function that accepts a parametric system of equations and other MATLAB plot
properties then plots the given curve.

2.

Define a function that accepts a polar equation and other MATLAB plot properties then
plots the given curve.

3.

Write a program that draws the diagram shown below:4.

Evaluate the following integral by first converting to an integral in cylindrical coordinates.5.

Plot the following:6.

Write a program that will convert between Cartesian , Cylindrical, and Spherical
coordinate systems. Hint: Use different functions for each conversion.

7.

You may use the following conversion table.

Student Exercises

 Coordinate Systems Page 107

 Coordinate Systems Page 108

Chapter 9

Two-Dimensional Vector Operations:

Section 1: Vectors and Basic Vector Operations

Section 2: Plotting

Section 3: Other Operations

Student Exercises

MATLAB allows us to enter vectors very easily. We can do a row vector whereby columns are
separated by spaces or commas and rows are separated by semicolons. Try the following for a
vertical vector. The semicolons put the numbers on different rows.

1
2
3

v =

And for a horizontal vector, the commas put the numbers on different columns. Note that you
could also just use spaces instead of commas.

v =
 1 2 3

Similarly we can create matrices easily, as rows are separated by semicolons while columns in
the vector can be separated either by commas or spaces. For example the following gives a 2 x
3 matrix:

A =
 1 2 3
 4 5 6

We can also create vectors with variables in them provided we declare the variables
symbolically first. For example:

v =
 t
 t^2
 t - 3

MATLAB deals with vectors very intuitively. For example we can add and subtract vectors using
+ and -

ans =

Section 1: Vectors and Basic Vector Operations

 Two-Dimensional Vector Operation Page 109

ans =
 1
 2
 3

and we can do scalar multiplication simply by multiplying by a constant.

ans =
 9.2000
 -2.1000
 -9.3000

Suppose we wish to multiply each entry in a by the corresponding entry in b, and a and b are:

a =
1 2 7
b =
4 3 0

We can use the special MATLAB notation .*, so a.*b would find [1*4 2*3 7*0], or we can use ./ and .
^ which will divide or apply powers as follows:

ans =
4 6 0
ans =
0.2500 0.6667 Inf
ans =
1 8 1

 Two-Dimensional Vector Operation Page 110

Plotting is a simple function in MATLAB, in previous chapters we discussed plotting a data on a
scatter plot, and plotting graphs in different coordinate systems. In this chapter we will discuss
plotting vectors and drawing the contour.
A quiver plot displays velocity vectors as arrows with components (u,v) at the points (x,y).
quiver(x,y,u,v) plots vectors as arrows at the coordinates specified in each corresponding pair
of elements in x and y. The matrices x, y, u, and v must all be the same size and contain
corresponding position and velocity components. quiver(u,v) draws vectors specified
by u and v at equally spaced points in the x-y plane. quiver(...,scale) automatically scales the
arrows to fit within the grid and then stretches them by the factor scale. scale = 2 doubles their
relative length, and scale = 0.5 halves the length. Use scale = 0 to plot the velocity vectors
without automatic scaling. Note that by default, the arrows are scaled to not overlap, but you
can scale them to be longer or shorter if you want.
MATLAB® expands x and y if they are not matrices. This expansion is equivalent to
calling meshgrid to generate matrices from vectors:

Figure 9.1

For example to create a vector plot with the two components u = cos(x).*y and v = sin(x).*y we
do the following:

Section 2: Plotting

 Two-Dimensional Vector Operation Page 111

For two vectors/matrices to have a valid dot product they must follow the format MxN dot
NxK where the number of rows in the first matrix matches the number of columns in the
second matrix.
Here is an example of a dot product:

Taking the dot product in MATLAB is as simple as using the * operator with two matrices. Below
shows the previous example done in MATLAB.

Unlike the dot product, the cross product requires the two vectors to be three dimensional.
Here is an example of a cross product:

The cross product of two vectors can be taken using the command cross(), where the
parameters are the two vectors. The example above is repeated below in MATLAB:

To find the magnitude of a vector, we can use the norm() command. The magnitude is
calculated by adding up the square of each element in a vector (regardless of dimension) and
taking the square root of the whole sum.

MATLAB outputs .

The transpose() function allows us to transpose vectors and matrices.

MATLAB also allows users to take the determinant of a matrix with the command det().
Remember that the determinant only applies to square matrices.

Section 3: Other Operations

 Two-Dimensional Vector Operation Page 112

The determinant of vec gives 10.

Finally, the reduced row reduced row echelon form of a matrix can be calculated with the
function rref().

The result would be the following matrix:

 Two-Dimensional Vector Operation Page 113

Write down a series of MATLAB commands which will define t symbolically and then find
the product of the matrices [1 t -t;2 t^2 1/t] and [t 1/t^2;t 2;-1 0].

1.

Create a function that finds the magnitude of a given vector (do not use norm()).2.

Construct a function that accepts a system of equations and uses rref() to solve for the
variables.

3.

Given a matrix, create a function that outputs its identity.4.

Given the three vertices of a triangle, write a function that outputs its area.5.

A basic Hill cipher involves first choosing a 2x2 matrix of random elements from one to 26. 6.

A =

To encrypt a message, we must separate the text into pairs of letters.
HELLO -> HE LL OO
We then convert the letters into numbers (A= , B=2, … Z=2).
HE LL OO -> 8,5 12,12 15,15
Now we take the dot product of A and each pair of numbers.

The resulting numbers is the encoded message. Note that numbers larger than 26 are
corrected by finding their remainder when divided by 26.
HE -> 8,5 -> 155, 123 => 25, 19
Create a function that accepts a 2x2 key and message and outputs the message encrypted
with the hill 08cipher.

Now write a function that accepts a 2x2 key and a hill cipher encrypted message and
returns plaintext. Hint: You will need to use MATLAB's inv(X) function.

7.

Student Exercises

 Two-Dimensional Vector Operation Page 114

Chapter 10

Calculus In MATLAB:

Section 1: Limits

Section 2: Derivatives

Section 3: Integrals

Section 4: Infinite Series

Student Exercises

The fundamental idea in calculus is to make calculations on functions as a variable “gets close
to” or approaches a certain value. ecall that the definition of the derivative is given by a limit,
assuming a limit exists. Fortunately MATLAB can solve limits using a simple command.

By the default case, limit(f) is the same as limit(f,x,0). Explore the options for
the limit command in this table, where f is a function of the symbolic object x. The table below
will better explain how to work with limits in MATLAB:

Mathematical Operation MATLAB Command

limx→0 f(x) limit(f)

limx→a f(x) limit(f, x, a) or

limit(f, a)

limx→a

−

f(x) limit(f, x, a, 'left')

limx→a+ f(x) limit(f, x, a, 'right')
Table 10.1

For example, to calculate the limit as x approaches 0 from the left,

We do:

And MATLAB will return -1
And to calculate the limit as x approaches 0 from the right,

We do:

And MATLAB will return 1
And Finally to calculate the two sided limit as x approaches 0, we can do:

However, we know that since the limit from the right and the left differ, a two-sided limit does
not exist. So, MATLAB will return NaN

Section 1: Limits

 Calculus in MATLAB Page 115

MATLAB uses a simple command, diff to take the derivative of a function, we can also take the
second derivate of a function using the same command. Also, MATLAB allows us to take
derivatives of functions with several variables. To demonstrate how to take the derivative of an
expression in MATLAB let's look at the following example:

MATLAB will differentiate f with respect to x and will return 5*cos(5*x)
To take the second derivate of the function, we can approach two different methods. We can
take the derivative twice as follows:

Or we can use a more appropriate method and use the function like below:

To differentiate an expression that contains more than one symbolic variable, specify the
variable that you want to differentiate with respect to. The diff command then calculates the
partial derivative of the expression with respect to that variable. For example:

Will differentiate f with respect to t, and will return s*cos(s*t)
To differentiate f with respect to the variable s, we do:

This returns t*cos(s*t)
Note that if you do not specify a variable to differentiate with respect to, MATLAB chooses a
default variable. Basically, the default variable is the letter closest to x in the alphabet.

You can also take the second derivative of an expression that contains several variables. For
example to take the second derivative of the previous function with respect to t we do:

This returns -s^2*sin(s*t)
To better illustrate how to use the diff command, refer to the following table:

Section 2: Derivatives

 Calculus in MATLAB Page 116

Mathematical Operator MATLAB Command

 diff(f) or diff(f, x)

 diff(f, a)

 diff(f, b, 2)

Table 10.2

 Calculus in MATLAB Page 117

Integration has been made very simple and straight forward in MATLAB, much like
differentiation, there is a command int for integration. For example, Suppose we need to
integrate the function

 . We can do:

And MATLAB returns 7*atan(x)
Note that atan is the same as arctan which is the same as inverse tangent.
That is how indefinite integration works in MATLAB. And to take a definite integral lets look at
another example. For example, to compute the area under the curve f(x) = x^3 + ln x over the
interval where x is between 5 and 10. Just add those end-points to the int command as two
additional parameters as follows:

And MATLAB will return 5*log(20) + 9355/4
The table below will better explain and illustrate how to use integration in MATLAB:

Mathematical Operator MATLAB Command

int(x^n)
int(x^n, x)

int(sin(2*x), 0, π/2)
int(sin(2*x), x, 0, π/2)

g = cos(a*t + b)
int(g)
int(g, t)

Table 10.3

MATLAB has a specific function for taking double and triple integrals as well called integral2()
and integral3() respectively.

As you would expect, the new commands are only different in the number of parameters they
need to setup bounds for each variable in the integral, and the expression the user wishes to
integrate must be given in the form of an anonymous function now. Anonymous function
follow this format:

Thus, an example of a triple integral in MATLAB would be:

Section 3: Integrals

 Calculus in MATLAB Page 118

Thus, an example of a triple integral in MATLAB would be:

Figure 10.1

 Calculus in MATLAB Page 119

MATLAB allows us to create and evaluate infinite series with the symsum() function. This
function contains two different forms:

The first version evaluates the sum of expression f which uses variable k from bounds a to b.
The second version does not require bounds and instead evaluates the indefinite sum. Inf can
be used to set the bounds to positive or negative infinity. For example, let's say we want to
evaluate this infinite series, which we know will converge to -1:

Translated into MATLAB, the series would be:

Evaluating an infinite series that does not converge results in infinity or negative infinity.

Figure 10.2

Below is an example of an indefinite sum and the result in MATLAB:

Figure 10.3

Section 4: Infinite Series

 Calculus in MATLAB Page 120

Have MATLAB integrate the function . Then Have MATLAB compute the
definite integral of that same function over the interval [2, 4].

1.

Use MATLAB to solve the separable differential equation

 2.

Write a function that accepts the expression and bounds of an infinite series as input and
tells the user if the series converges or diverges. If it converges, it tells the user at what
number the series converges.

3.

When given the weight of an object and the 1-dimensional distance it has traveled, create
a function that can output the amount of work needed.

4.

Create a method that outputs a mathematical function when given a point the function
passes through (x, y) and the function's first derivative (following the format
).

5.

Construct a method where given an object's velocity function, the method outputs an
equation for the object's acceleration as well as plots both velocity and acceleration on
the same graph.

6.

Student Exercises

 Calculus in MATLAB Page 121

This book is designed to give students an
introduction to MATLAB in the following
topics:

Data Types and Basic Evaluations

Algebraic Computations

Conditions and Loops

Arrays

Classes and Functions

Data and Statistics

Coordinate Systems

Two-Dimensional Vector Operations

Calculus In MATLAB

For additional resources and documentations visit:
 www.mathworks.com/help/index.html

Refer to the following to purchase a MATLAB License:
 www.mathworks.com/store

If you already have a MATLAB License, download and activate
MATLAB here:
 www.mathworks.com/downloads

