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Abstract 

In this report, we explore key objectives for Human Systems 
Integration (HSI) Test Evaluation Validation and Verifica-
tion (TEVV) for human-Artificial Intelligence (AI) interac-
tions within analytical and information systems. Owing to 
their features and function, these systems pose challenges to 
the test community in evaluating the reciprocal influence of 
human and AI elements on one another. We argue that soft-
ware system instrumentation provides the necessary capabil-
ities to resolve measurement gaps. We further report our own 
efforts in adapting this technology for HSI TEVV and mak-
ing these capabilities accessible to the larger test community. 

Introduction   

AI is both a smaller and a bigger endeavor than it was at its 

inception. In pragmatic practice, AI is smaller in that ‘gen-

eral AI is neither the singular objective for the field, nor is it 

the desire for most organization. Rather, industry develops 

modular, functionally focused AI and ML capabilities as 

services, deployable into larger platforms (e.g., social me-

dia, ecommerce), or enterprises (e.g., integrated business 

operations). But, in this way, AI is also a bigger endeavor 

because the influence and complexity that small compo-

nents add within platforms and enterprises can be dramatic, 

particularly where human users (and behavior) are im-

portant elements (or inputs) into platforms.  

 The influence of AI and the complexity it adds at scale is 

laid bare in analytic and information systems, where there is 

a fervor for AI to deliver processed information and recom-

mendation to analysts from a wide variety of sectors. Indeed, 

AI within this context presents a unique challenge. Unlike 

content delivery platforms, where AI’s role is to brusquely 

deliver content and advertisement to users based on prefer-

ence models, AI in analytical and information systems de-
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livers processed information to user to support human rea-

soning and decision-making. Beyond questions of accuracy 

and precision, AI in this context, more than other digital 

platforms, can shape how users interpret other data and ho-

listically understand and synthesize larger sets of data. In 

turn, decisions made within these systems based on infor-

mation processed and exploited by AI can have profound 

effects on sectors in which it operates—business, finance, 

and intelligence. The implicit challenge regarding AI in this 

context is gauging reciprocal influence between users and 

AI and ascertain whether AI exerts undue influence in syn-

thesis over other information. It is essential to effectively 

manage this influence so that it is appropriately calibrated 

against the precision and accuracy of AI.  

 Largely owing to Lee and See (2004) there is a thriving 

literature and set of subjective batteries for understanding 

trust in autonomy and AI. This provides a theoretical foun-

dation for understanding the influence of AI within infor-

mation systems as described above. However, the desire to 

deploy AI and ML into larger, distributed systems poses a 

challenge for traditional measurement approaches to HSI 

TEVV. These are slow moving endeavors and tend rely on 

subjective measurement, which do not translate well for in-

forming software development and system management. As 

such, there is a need to understand how AI influences human 

users to understand if AI delivers expected value to opera-

tions and operational end-users. This requires three things: 

1) in situ methods for capturing human AI interactions at a 

transactional, behavioral level that can be translated into ac-

tionable development objectives; 2) traceability on both 

ends of the human-system transaction—initiation of user be-

havior and origin of information (e.g., AI/ML service); 3) 

granularity in measurement—the ability to widely sample 

behavior as users interact with Analytical applications, ho-

 



 

listically. High temporal resolution and deep metadata con-

text on each behavior serves the inferential capabilities that 

make gauging reciprocal human-AI influence possible.  

 To meet the needs for in situ human-AI interaction meas-

urement, we are developing measurement apparatus from 

adapted, commercial off-the-shelf (open source) software 

instrumentation technology, supportive processing, and an-

alytical capabilities that meet the requirements for HSI 

TEVV delineated above. This report articulates how we ad-

dress gaps left by COTS technology and analytical lessons 

learned from past work. We also articulate our approach for 

processing instrumentation data and producing developer-

actionable insights based on descriptive and inferential use 

of graph analytics. We discuss at length why graph methods, 

coupled with advanced segmentation practices provide the 

basis for an inferential framework for AI influence that is 

widely applicable to a range of analytical and information 

system use-cases, and why this approach reconciles past les-

sons-learned from other approaches. Finally, we discuss 

how our efforts will provide the larger test community scaf-

folding and best practices, as well as access to methods and 

apparatus that have had steep skill requirements, histori-

cally. Building our on open-source development, we believe 

the test community will better be able to expose observable 

patterns of human (and system) behavior that can be used to 

validate and refine other important measurement objectives, 

e.g., trust in autonomation, and allow for aligning such ob-

servations against operational outcomes to identify issues 

addressable with engineering solutions. 

Human-AI Interaction Test Objectives within 

Analytical and Information Systems 

We use ‘Analytical and Information Systems’ to refer to a 

specific set of distributed systems; their purpose is to create 

information or intelligence, and sometimes consume infor-

mation and intelligence for other purposes (e.g., automa-

tion). In most embodiments, they incorporate search and ref-

erence function (e.g., search, query, and filter for data or in-

formation), summarization and some inferential features 

(e.g., statistical operations), and an information-rich user in-

terface, such as an interactive ‘dashboard’. Notable exam-

ples in the public consciousness are Palantir products, vari-

ous financial planning products, Geographic Information 

Systems (GIS, e.g., ESRI products), and business intelli-

gence applications (e.g., Apache Superset (Figure 1)). 

 The most discriminating feature of Analytical and Infor-

mation Systems is that they are augmentation technologies 

designed to assist human decision-making and risk analysis. 

Often, they incorporate autonomous elements (e.g., special-

ized processing on specific data feeds, AI-based predictive 

capabilities), however, they are designed to provide human 

users data and information both, with the assumption that 

the (human) user provides synthesis and makes decisions 

with operational impacts, based on that synthesis.    

 The objective for test and evaluation of human-AI inter-

action within analytical and information systems is to under-

stand the influence of human and AI elements on one an-

other, their mutual influence on the larger system, and on 

the workflows for which that system was created to support. 

These objectives are very similar to a more general view of 

HSI TEVV. However, analytical and information systems 

that incorporate AI make these objectives especially chal-

lenging because of their nature. Again, these systems pro-

vide both information and scaffolding to human users to en-

able a greater, holistic synthesis of available information. 

This means that an evaluation of reciprocal influences be-

tween human and AI elements in the system context requires 

not only an examination of how humans utilize and rely on 

AI components, but also how AI may augment or contami-

nate human users’ interpretation of the larger information 

environment. Where the laboratory provides some tools to 

mount such an examination, it is not designed for the agility 

and alacrity with which AI can be developed and deployed 

into modern information systems and larger platforms.  

 

 
 

Figure 1. Apache Superset Business Analytics Dashboard 
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How We Test Today 

How we perform HSI TEVV for Analytic and Intelligence 

systems today is not significantly different than it was a dec-

ade ago. HSI is “the management and technical discipline of 

planning, enabling, coordinating, and optimizing all human-

related considerations during system design, development, 

test, production, use and disposal of systems, subsystems, 

equipment and facilities” (SAE 2019). It owes to a long-

standing tradition of safety and survivability testing in con-

trol and autonomous systems originally formalized by the 

US Department of Defense (DoD). It borrows methods from 

a wide range of disciplines: human factors, human computer 

interaction, psychology, systems engineering, and organiza-

tional research, among others.  

 Stemming from a test tradition for evaluating physical 



 

systems (e.g., aeronautical, naval, tactical, and robotic), the 

field’s capabilities for evaluating distributed software sys-

tems did not grow commensurately with the sophistication 

and accessibility of technology for standardizing and man-

aging deployed software at scale (e.g., containerization). As 

such, there remains methodological mismatch on both scale 

and speed: First, current mainstay ethnographic, subjective 

survey, and laboratory assessments are ill-equipped to sam-

ple system behavior (including user behavior) within eco-

logical valid scales, which limits an understanding the scope 

and severity with which new components influence the sys-

tem and incumbent information environments. Second, a 

regimen of systematic, controlled laboratory studies can 

generate meaningful findings about how new information 

can influence synthesis and decision-making within a larger 

information environment. However, particularly for large 

scale, production systems (not prototypes) laboratory testing 

cannot meet the agility of modern software system develop-

ment and deployment practices.  

Software System Instrumentation 

Software system instrumentation refers to set of methods for 

reporting on the state of and actions with a software envi-

ronment, or larger system. Instrumentation practices vary 

widely and suite a wide range different purposes—access 

auditing, error messaging, system telemetry, and behavioral 

usage logging. Most germane to this report are Behavioral 

Usage Logging and System Telemetry. The former reports 

on user interactions (e.g., ‘click’, ‘mouseover’) with specific 

elements (e.g., ‘div’, ‘form’); virtually all programming lan-

guages that service user interface development provide clas-

ses uniquely suited to the practice. Behavioral Usage log-

ging is most recognizable in the context of web analytics 

(see Figure 2) where it has been a ubiquitous practice since 

the early 2000’s and is currently the foundation for a multi-

billion-dollar industry lead by Google Analytics.  

 System Telemetry uses specific frameworks (e.g., Prome-

theus, Zipkin, Jaeger, Open Telemetry) to provide traces be-

tween distributed services and applications (including cli-

ents) to report on the path through which requests and re-

sponse propagate through the system (or platform), as well 

as metadata (e.g., time to return). Prometheus, for example, 

is an incumbent of the Cloud Native Foundation.  

 Both technologies—Behavioral Usage Logging and Sys-

tem Telemetry—are in wide use on large scale web plat-

forms. Importantly, these technologies could jointly collect 

features essential to evaluating the reciprocal influence be-

tween human and AI elements of larger systems—but they 

are not currently used to this purpose.  

 

 
 

Figure 2. Heatmap of User Activity (Web-Analytics). Im-

age Credit: City University Interaction Lab; License: 

https://creativecommons.org/licenses/by/2.0/deed.en 

 

 Indeed, current (web) instrumentation technology has the 

requisite capabilities required for capturing high resolution 

behavioral transactions between human and machine ele-

ments of large distributed systems and do so with both trace-

ability and granularity. However, there remain gaps in the 

practice for applying these technologies for the purpose of 

understanding human-AI reciprocal influence, even though 

the technologies are capable.  

 First, Behavioral Usage Logging and System Telemetry 

generally serve different purposes. As such, COTS products 

generally do not provide comprehensive, integrated solu-

tions that allow for purposing both capabilities for HSI test-

ing; there are gaps in the practice of integrating these tech-

nologies in efficient ways that reduce redundancies and al-

low for dual use. Second, and most notably, there are gaps 

in established best practices for analytical pre-processing 

that support more sophisticated behavioral analysis (e.g., re-

ciprocal inference). These gaps largely owe to the very sim-

ple point that HSI testing doesn’t help monetize applications 

in the same way that web-analytics do and the service indus-

try that has built itself around web/business analytics 

doesn’t have any incentive to provide HSI testing as a ser-

vice or put tradecraft in the public domain. Because of these 

gaps, there are examples for analytical approaches for more 

sophisticated behavioral analyses, but few essential prag-

matic resources for collecting the right data to feed these ap-

proaches and little guidance on how to effectively treat data 

so that it can be submitted to these approaches.  

Lessons Learned 

Our objective is to address the gaps outlined above so that 



 

software system instrumentation technologies might be ap-

plied to the deeper challenge of understanding reciprocal in-

fluence between human and AI in analytical and information 

systems. We are not the first to attempt this (for some of us, 

this is not our first attempt). Historical lessons learned pro-

vide illustrative guidance on how best to address technical 

gaps and gaps in practice both. 

 Instrumentation Leads Analytics. Early approaches to un-

derstand user behavior within the context of Analytical and 

Information systems took a nomothetical approach to under-

standing granular user behavior. This is to say that for every 

action and analyst might perform, that action would be 

tagged or correlated to some cluster pertinent to an analyti-

cal process (c.f., Alonso & Li 2005; Wright et al 2006; Poore 

2017). These approaches were primarily driven by triage 

use-cases—by developing a model of analysts’ workflow 

and correlating actions/events logged through application 

clients, they attempt to predict and deliver content to ana-

lysts based on the workflow “state” they were observed in 

and the content they interacted with. 

 These “top down” modeling approaches proved more ef-

fective for application design than for behavioral analysis; 

theoretically driven models prove brittle in attempting to 

generalize models across applications. Pragmatically, the 

level of effort associated in explicitly associating model fac-

ets or states with specific user behavior across different ap-

plications is prohibitive. A key lesson learned in this case is 

that coercing instrumentation practices to serve specific an-

alytical approaches is costly, prone to adoption risks, and 

results in brittle models. As such, our approach is to adapt 

processing and inferential methods to use canonical instru-

mentation data. Relying on already ubiquitous instrumenta-

tion methods provides a dual-use value proposition: devel-

opers gain the benefit of standard usage analysis and system 

telemetry, while the testing community co-opts the same 

data for different purposes.  

 Preprocessing has a Greater Cost than Analytics. Instru-

mentation data generally takes for the form of flexible mes-

sage formats, and a single user session can create thousands 

of such messages. Even simple operations like filtering 

through messages can be complex and time consuming and 

require a deep skillset in data science and data engineering. 

Like so many endeavors that require data scientists (not just 

analysts), processing instrumentation data follows a Pareto 

principle—80% of the work is in preprocessing and 20% of 

the work is the analysis itself.  

 The biggest barrier to entry for utilizing Software System 

Instrumentation for complex behavioral analytics is data 

preparation and preprocessing. Instrumentation data, espe-

cially Behavioral Logging and System Telemetry, is chal-

lenging to work with because it uses very few formatting 

standards, by design. To reduce the memory costs associated 

with generating logs and shipping them, Instrumentation 

packages utilize very simple key-value message structures 

to capture data. This also allows for customization, which is 

valuable. However, this creates several challenges in a 

‘dual-use’ model. That every message doesn’t conform to 

the same schema (i.e., different keys), creates challenges for 

search and reference in analytical pipelines.  

 Analytic and information systems result in challenging 

instrumentation data to work with. Where ecommerce and 

content delivery system workflow are, by design, linear in 

nature, analytical software designed for information synthe-

sis result in organic user workflows that are highly varied 

and highly recursive (analyst may repeat the same opera-

tions with different search terms, for example). As such, 

identifying discrete workflows and tasks within instrumen-

tation data can require significant skill in forensic data sci-

ence and data engineering. 

 To bootstrap a community of practice around software in-

strumentation data for deep behavioral analysis, there is a 

greater need for practices and utilities that make the data 

easy to manage, curate, query, filter treat than for analytics 

themselves. Our work aims to bootstrap extensible prepro-

cessing that increase the accessibility of instrumentation 

data to the wide set of disciplines within the test community.  

 Analytical and Intelligence Applications have Intrinsic, 

Behavioral Properties. Analytical approaches for under-

standing reciprocal influence between human and AI ele-

ments within information systems neither need be “exquis-

ite” nor complicated. Rather, simplicity aids interpretation. 

On the other hand, in selecting analytical approaches it is 

important to note that not all applications are created 

equally, especially in complex information environments. In 

contrast to ecommerce and content delivery applications, 

User Interfaces (UI) designed for Analytical and Infor-

mation Systems support synthesis. The market for these sys-

tems competes on effective user design. This means that 

while streaming service websites all look about the same, 

there are great differences between analytical UIs.  

 Wider variation between applications means that general-

ization of analytical approach can run aground “apples to 

oranges” problems very quickly. For example, web analyt-

ics for usage analysis and workflow analysis rely heavily on 

frequentist measures like ‘click rate’. In content delivery ap-

plications and ecommerce applications, clicks correspond to 

selections of content. As such, ‘click rate’ has some face va-

lidity as a metric for user workload. In contrast, in analytical 

applications, click behavior can have different meaning or 

at least different weighting—GIS applications rely heavily 

on map-based UIs, which rely more on ‘drag’, 

‘mousedown’, and scroll events at different rates to navigate 

maps. The meaning of these events is different to—what us-

ers’ click on (the map) is arbitrary and doesn’t indicate a 

selection.  

 Previous work illustrates that in analytical applications 

click-rate has less predictive value for workload, for exam-

ple, than the pattern or distribution of clicks across different 



 

features—how users integrate use of different elements with 

different information (Mariano et al 2015; Poore 2017). Ad-

ditionally, the same research finds that models that incorpo-

rate frequentist features (e.g., the number of clicks) do not 

uniformly predict workload well across application with dif-

ferent design features. In summary, simplicity is important, 

but so is extensibility in analytical approaches—our aim is 

to provide analytical frameworks to the test community that 

accommodate a variety of input features in anticipation of 

wide variation between Analytical UIs. 

Current Directions in Logging Human-AI 

Transactions 

Our work addresses objectives in translating software sys-

tem instrumentation into a dual-use technology—capitaliz-

ing on its ubiquitous use and corpus of enabling, open-

source technology and providing capabilities to adapt it for 

use in HSI TEVV of human-AI interactions within Analyti-

cal and Information Systems. 

 Granular Behavioral Logging. To address granularity in 

capturing human interaction with software systems, we 

adopted a disaggregated, holistic approach to logging user 

behavior, which is to say, “log everything you can, filter 

what you know you don’t need, and keep everything else”. 

To accomplish this, we utilize a COTS open-source product: 

Apache Flagon UserALE.js. UserALE.js is a Javascript(.js) 

library for logging user behavior data in web applications. 

We selected it for its open-source posture (accessibility to 

the test community), permissible license (ALv2), its cus-

tomizability, and features described below. It deploys as a 

.js ‘script tag’, a Node.js Package Manager (NPM) module, 

and as a Chrome/Mozilla browser plugin. 

 To meet HSI TEVV objectives for human-AI interac-

tions, it is important to capture how human users interact 

with all elements of the user interface. Given these are de-

signed for synthesis and a key TEVV objective is to under-

stand the reciprocal influence between human and infor-

mation space, it’s essential to observe their interactions with 

all features (e.g., page elements) that manipulate or manage 

the information space. Additionally, owing to lessons 

learned, we also sample user behavior at a rate (e.g., every 

500ms) and across the spectrum of user behavior types both 

at the page/document-level (e.g., ‘click’, ‘mousedown’, 

‘zoom’, ‘mouseover’), including behaviors that indicate us-

ers are attending outside of a given display (e.g., ‘focus’, 

‘blur’). UserALE.js provides this capability—by default it 

logs virtually all behavior on all elements on a page. Other 

products can be configured to do this as well (e.g., Matamo). 

 We also collect ‘verbose’ logs with comprehensive meta-

data. Listing 1 provides a sample ‘click’ event logs from 

Apache Flagon UserALE.js, in its native Javascript Object 

Notation (json) format. This verbose log format provides a 

highly granular capture of user behavior with sufficient con-

text to understand the behavior (e.g., ‘click’) the target ele-

ment (named by HTML tag, e.g., ‘test button’), as well as 

detail about the embedding of the target element in the Doc-

ument Object Model (DOM), which adds additional infor-

mation that aides in disambiguating behavior when target 

elements are similarly named.  

 In the course of our work, we developed additional capa-

bilities to make UserALE.js maximally useful for the test 

community and increase granularity in behavioral data cap-

ture. This includes the ability to log from “iframes” with the 

UserALE.js browser plugin. Also, we have developed ex-

amples for how to customize logging through additional 

scripts (without UserALE.js source modification), these in-

clude, for example, examples for how to log XMLHttpRe-

quests using UserALE.js’ native custom log API. This kind 

of capability allows for capturing not only user behavior but 

also transactions between the client and server, as well as 

data sent back and forth. For many applications this would 

allow capturing some representation or record (e.g., URI, 

json blob) of new data sent to the client based on a user re-

quest (search, query, mouseover/’tooltip’). Similar methods 

can be used to capture ‘fetch’ or ‘websocket’ transactions as 

Listing 1: Apache Flagon UserALE.js Behavioral Log 

1 { 
2 target: 'button#test_button', 

3 path: [ 

4   'button#test_button', 

5     'div.container', 
6  'body', 

7  'html', 

8  '#document', 

9  'Window' 

10 ], 
11 pageUrl: '…', 
12 pageTitle: '…', 
13 pageReferrer: '…', 
14 browser: '…', 
15 clientTime: 1639544867213, 
16 location: { x: 56, y: 210 }, 
17 scrnRes: { width: 1044, height: 439 }, 
18 type: 'click', 
19 logType: 'custom', 
20 userAction: true, 
21 details: {}, 
22 userId: '…', 
23 toolVersion: '…', 
24 toolName: 'Apache UserALE.js Example', 
25 useraleVersion: '2.2.0', 
26 sessionID: 'session_1639544630593', 
27 customLabel: '…' 
28 } 
 

 



 

well, and provide a means of associating interactive UI ele-

ments, with user behavior, and the underlying information 

space of Analytical and Information Systems. 

 Traceability in Instrumentation. Client-level instrumenta-

tion provides a high degree of granularity about user behav-

ior and about how the system responds to user behavior, 

transactionally. However, the latter capabilities are limited 

to transactions in which the client (e.g., UI) initiates request 

or receives data. In larger, distributed analytical and infor-

mation systems, components that ‘serve’ requests from cli-

ents are rarely the point of origin for new data or information 

that an analyst might request. AI services are frequently de-

ployed as modules or microservices deeper into systems. 

Typically, other services route requests to these modules 

that initiate a request, or they operate asynchronously with 

the client and push data to other data services that client can 

query. Therefore, without other methods it is impossible to 

fully attribute data received by the client to specific ele-

ments, which poses inferential challenges for HSI TEVV. 

  

 
 

Figure 3. How System Telemetry Instrumentation Works 

 

 System Telemetry instrumentation provides a wide tool-

set for adding ‘silver-bullet’ traceability for transactions be-

tween human and machine elements, especially when there 

are numerous intermediary transactions between the point of 

request (e.g., client) and the service that creates or processes 

requested information. Figure 3 illustrates how System Te-

lemetry works; lean instrumentation is deployed throughout 

the system (each module is language specific) that report a 

‘chain of custody’ for requests as they are routed through 

the larger system. Each request has a unique ‘traceId’. The 

“telemetry” data about that ‘trace’ is a series of log messages 

that declare which module reported participating in that 

trace and whether they were parent or child to another pro-

cess in that trace. This process creates an unbroken chain of 

traceability between requests and responses. 

 Recognizing the value in System Telemetry for HSI 

TEVV, we are creating replicable examples for how to con-

figure System Telemetry to report into Behavioral Usage 

Logs. This would allow us to add traceability to the granu-

larity we are able to collect about human-AI transactions 

from the client. Specifically, we performed some experi-

ments with Open Telemetry, and open-source (ALv2) 

COTS product for collecting and reporting system traces. 

They provide a ‘user-interaction’ module that does log user-

behavior from the client that is associated with request to 

system processes. It doesn’t provide comprehensive logging 

itself, however, it contains enough to cross-reference with 

Apache Flagon UserALE.js logs also generated from the cli-

ent. This allows us to extract a ‘traceId’ from Open Telem-

etry logs and add them to UserALE.js logs, which allows us 

to relate user behaviors, especially requests for information 

with the source of that information (e.g., AI/ML modules). 

This approach is in keeping with our “dual-use” strategy and 

doesn’t over-encumber the various roles and uses of instru-

mentation technology. It does provide significant equity in 

the technology for use in HSI testing and provides for access 

to the technology, methods, and best practices for utilizing 

System Telemetry to the larger test community.  

 

 
 

Figure 4. ARLIS’ Open-Source Instrumentation Testbed 

 

 Another ARLIS development objective is to provide the 

larger test community with an open-source instrumentation 

testbed (Figure 4). The testbed itself is built from open-

source components, including an open-source Analytical 

application (Apache Superset). Apache Superset provides 

significant latitude in designing Analytical dashboards con-

structed from underlying, modifiable Python utilities.  This 

would allow the larger test community the ability to practice 

and prototype instrumentation methods using test domain-

relevant data that may be imported to Apache Superset. To 

accomplish this, we are providing methods for injecting cus-

tomizable UserALE.js and Open Telemetry instrumentation 

into Superset and providing accessible ways for the commu-

nity to deploy the stack, and experiment with instrumenta-

tion data within customizable use-cases. 



 

Current Directions in Pre-Processing Instru-

mentation Data 

Understanding well that the biggest barrier to entry for uti-

lizing Software System Instrumentation for complex behav-

ioral analytics is data preparation and preprocessing, we are 

focusing our work on making it easier to for non-experts and 

novices to make use of this rich data. Specifically, our ef-

forts center on two pre-processing pain-points. First, we are 

creating highly re-usable examples for incisive search, 

query, and filter operations to retrieve more manageable re-

turns from data. Second, we are developing a Python pack-

age with exportable utilities and classes to support analysts 

as they segment instrumentation data—identifying and 

curating subsets of instrumentation data that correspond to 

specific users, software states, tasks, and workflows.  

 Search and Reference Utilities. To make search and ref-

erence operations for instrumentation data more accessible 

to the test community we adopted and improved upon prec-

edents established by the Apache Flagon community. In this 

respect, we utilize Elasticsearch as a datastore to collect in-

strumentation data. Elasticsearch is built atop Lucene, 

which is specifically designed to facilitate document search. 

It supports a robust and easy to learn query language for 

terms pertaining to keys, values, and data stored in values. 

A widely used datastore, Elastic supports packages that 

make executing queries against it in a variety of analytical 

languages, such as Python (elasticsearch_dsl). As such, we 

have developed a range of re-usable examples (see Listing 

2) for incisive search against UserALE.js, which can easily 

be modified to conform to other log data (e.g., Matamo).  

 Elasticsearch also supports a customizable dashboard ap-

plication—Kibana—which allows users to explore log data 

in near-real time (see Figure 5). This provides an ‘online’ 

forensic capability that allow analysts and data scientists to 

understand how specific user events in client applications 

(e.g., analytical applications) result in specific patterns of 

logs. Using this capability, analysts and data scientists can 

establish how to describe the onsets (and exit criteria) of 

specific tasks in the application.  

 

  
 

 Figure 5. Elastic’s Customizable Kibana Dashboard  
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 Segmentation Utilities. Perhaps the most challenging task 

in processing log data for analytical applications is identify-

ing and curating segments of log feeds that correspond to 

specific tasks. This is also the most important task, as isolat-

ing logs that correspond to relevant user-driven operations 

provide the basis for inference within and across domain-

relevant tasks. As above, even when onsets, entrance, and 

exit criteria for specific tasks are identified in instrumenta-

tion data, procedurally mapping them to segments and curat-

ing those segments amounts to non-trivial effort. 

 To address the challenge of creating and curating instru-

mentation data segments, we are developing a Python pack-

age that abstracts away many of the challenging operations 

required in easy-to-use classes and utilities. Once onsets, 

and entrance criteria can be identified our package will sup-

port the search and iterative capabilities to identify the rele-

vant patterns of instrumentation data corresponding to those 

criteria utilizing efficient list and dictionary comprehen-

sions. These utilities return a structured list of time/date 

pairs corresponding to the start/end times for those criteria. 

Then our package allows analysts to extract segments from 

Listing 2: Example Workflow for Incisive UserALE.js Log Search and Reference in Elasticsearch 

1 #define query 

2 qLogType = Q("match", logType="raw") | Q("match", logType="custom") 

3 
4  #define filter 
5  filterEvents = Q('bool', filter=[~Q('terms', type=['mouseover','wheel','keydown'])]) 
6 
7 #chained search against Elastic 

8 elk_search = UserALEsearch \ 

9  .query(qLogType) \ 
10  .query(qfilterEvents) \ 
 

 



 

these times as properties objects each with their own prop-

erties (Listing 3). Segment objects are then stored in a dic-

tionary for search and reference. This provides two major 

benefits. First, this provides an efficient curation and foren-

sic capability for analysts to evaluate each segment by a 

range of properties (e.g., length in time, number of logs) and 

apply additional operations to individual segments by name 

or by property (e.g., filter). Second, it will allow for a gen-

erative capability for creating new segments based on set 

logic (e.g., the union, intersection of two segments).  

 We believe our forthcoming package will significantly re-

duce barriers to entry for processing log data, aid the larger 

test community in building robust, re-usable instrumenta-

tion pre-processing pipelines, and enable the inferential ca-

pabilities necessary for understanding reciprocal influence 

between human and AI in complex analytical systems.  

Current Directions in Generalized HSI Ana-

lytics for Instrumentation Data 

Beyond understanding the basis of inference—how to make 

comparisons across various conditions (e.g., tasks, seg-

ments)—it is also imperative to consider how to operation-

alize influence in understand reciprocal influences between 

human and AI elements of larger systems.  

 The cleanest way to differentiate analytical approaches is 

whether the approach is descriptive of what users do or how 

they do it. For our purposes, the latter is more relevant. An-

alytical applications support users’ synthesis of a wide 

swath of data and information. In that respect, frequentist 

information on what information they use based on what 

they click on is far less informative than how they integrate 

the information available to them to. Prior work supports 

this very intuitive point. Metrics summarizing integrative 

use outperform metrics of usage frequency (e.g., click-rate) 

by wide margins in predicting user accuracy on analytical 

tasks and user reports of Extraneous Cognitive Load 

(Mariano et al 2015; Poore 2017).  

 Another finding from the same prior work (Poore 2017) 

is that even integrative use metrics perform inconsistently 

across differently designed analytical applications if the 

models from which they are drawn are built from frequentist 

distributions. That prior work utilized “exquisite” Beta-Pro-

cess Hidden Markov Models that characterized usage 

“states”, where states were operationalized as distributions 

of click behavior across the element space (Mariano et al 

2015). A powerful lesson learned from this work is in ana-

lytical applications (unlike ecommerce or content delivery 

applications), specific user-events (e.g., ‘click’) and their 

frequency carry different meaning for different applications. 

 To address prior lessons learned, we posit a structural ap-

proach to analyze and characterize how analytical and infor-

mation systems are used. Specifically, we advocate for 

graph-based methods to evaluate how users sequentially 

chain their usage of different elements within analytical ap-

plications. This result is structural information (e.g., such as 

a directed graph) describing the temporal associations be-

tween different elements (Figure 6).  

 Analysis of these structures amounts to application of dif-

ferent graph analytics to one or more graphs. Connectedness 

and Centrality measures are analogous to the aforemen-

tioned ‘integrated use’ metrics. Combinations of metrics and 

weights may be useful for understanding the complexity of 

the graph. Graph methods also allow for comparison be-

tween one or more graphs in richer ways than are allowable 

by Markov states—Edit Distances provide a means to inci-

sively characterize two graphs based on what structural 

changes are requisite to recreate one graph from another.  Fi-

nally, graphs are also informative at different scales—Con-

nectedness, for example is more dependent on the number 

Listing 3: Example Workflow for UserALE.js Segmentation (create_segment) 

1 #define segment based on toggle element value ‘foo’ 

2 value = 'div.foo’ 
3  
4 #create sequential start/stop time list from logs with value in DOM path of ‘click’ log  

5  times = pairwiseStag([log['clientTime'] for log in sorted_data_paths_clicks.values() \ 
   if value in log['path']]) 

6  
7 #create segments objects across data set based on definition above 

8 Segments = segment.Segment.create_segment(clickData_dict, segment_names, times) 

9 for d in Segments.values(): 

10  print(d.segment_name, d.start_end_val, d.num_logs) #print segments with properties 

11   

12 segment1 ([start], [stop]) 17 
13 segment1 ([start], [stop]) 23 
14 segment1 ([start], [stop]) 35 
 

 



 

edges than the number nodes. We believe that graph meth-

ods provide an analytical framework for characterizing how 

analytical applications are used than frequentist approaches.  

 

 
 

Figure 6. A Directed Graph Depicting Transitions between 

DOM Elements on ‘Click’ (Extracted from Segment) 

 

 

Figure 7. Workflow Verification Visualizations (Top: Fun-

nel; Bottom: Sankey) Rely on Graph Methods 

 

 There are also pragmatic benefits to applying graph meth-

ods in this context. First, they can be used both descriptively 

and inferentially. A wide range of high-value, interactive 

visualizations for describing organic user workflows (e.g., 

Sankey; Figure 7 (Bottom)), and for testing hypothesis of 

specific workflows (e.g., Funnels; Figure 7 (top)) are built 

upon graph methods. Graphs are also accessible to a large 

audience with a variety of supportive analytical packages 

(e.g., NetworkX) and visualization libraries (e.g., Plotly) 

available for in major computing languages. 

 We advocate for graph methods as an effective basis for 

measurement within analytical and information systems. 

However, graphs alone are not a basis of inference for recip-

rocal influence. This is the importance of segmentation and 

the value of multi-method software instrumentation (behav-

ioral and system logging). Using these methods together, we 

can segment behavioral instrumentation based on when the 

client receives new information AI/ML services, for exam-

ples, and trace these returns to user requests. By comparing 

graphs between segments, across segments—on metrics or 

structure—we can make inferences as to whether that infor-

mation has a downstream influence on segments character-

izing specific tasks. This creates natural experiments within 

log streams where a pattern of usage in tasks under different 

conditions (new data, or application states) has an influence 

on subsequent execution of the same tasks (Figure 8). 

 In our current work on instrumentation pre-processing 

and analytics, we are also reducing to practice utilities for 

structuring log data in dictionary formats (used in pre-pro-

cessing) into formats that allow for easy ingest into graph 

methods. This includes easily creating and curating edge 

and node lists and doing so from extracted segments. We are 

also creating ready-made classes for creating graph visuali-

zations (as above) and extracting graph methods. We expect 

to release (open-source) these analytical methods in the 

same package, side-by-side, with pre-processing methods.  

 

 
 

Figure 8. Illustration of the Basis of Inference for AI Influ-

ence on Human Workflows and Information Synthesis 

Conclusions and Future Directions 

In this paper we explored the core HSI TEVV objectives for 

evaluating human-AI/ML interactions within the context of 

analytical and information systems. We also remarked on 

why the chief objective—evaluating the influence of AI on 

human synthesis of information—is made more challenging 

in these systems as compared to autonomous control sys-

tems, for example. To address this objective, we argued that 

human system interaction need be captured behaviorally, 

such that transactions between human and AI elements of 

the larger system can be observed. To accomplish this, we 

further argued that granularity and traceability in measure-

ment are both tantamount and elusive. Finally, we argued 

that software instrumentation provides a ubiquitous technol-

ogy that can be adapted for use in HSI TEVV and provide a 



 

measurement approach for gauging AI influence. 

 In developing a toolkit to bootstrap the HSI test commu-

nity on instrumentation, pre-processing, and analytical 

methods we reached the following conclusions: First, gran-

ularity afforded by behavioral instrumentation provides us 

the information to create very specific segments based on 

specific tasks in the client. Database technologies like Elas-

ticsearch make this easier with near-real-time dashboards 

and log indexing that support incisive query and filtering ca-

pabilities. Additional work by our team to create and curate 

segments as objects further reduces the work, providing the 

basis of a generative capability for creating additional seg-

ments based on the unions and intersections of existing seg-

ments. The value of segmentation cannot be oversold—cre-

ating granular segments provides the inferentially meaning-

ful contrasts within the log stream. Without this capability 

we could not make inferences to AI influence. 

 Second, traceability afforded by system telemetry instru-

mentation allows us to attribute new software states and in-

formation sent to the client directly to user or system opera-

tions. Using existing technology (Open Telemetry) we are 

developing examples to guide integration between behav-

ioral logging and system telemetry capabilities. Integration 

is lean and provides ‘dual-use’ benefit without adding un-

necessary work or redundant functionality that would 

prompt adoption issues by developer communities.   

  Third, having learned from prior work, simple graph 

methods may provide a stronger and more intuitive analyti-

cal framework for creating methods for integrative use than 

‘exquisite’ or ‘bespoke’ models based on frequentist distri-

butions—classes of events and their frequencies mean dif-

ferent things in differently designed analytical applications. 

Using graph methods—metrics, contrasts—extracted from 

segments defined based on user and system data provides a 

pragmatic approach to measuring influence between human 

and AI elements of analytical and information systems.  

 Next Steps. We emphasized the importance of under-

standing reciprocal influence between humans and AI ele-

ments of larger information systems. Humans can exert in-

fluence on AI by affecting what data is uses and ultimately 

whether returns from AI are misused or misinterpreted. 

While our inferential framework provides a reasoned ap-

proach for gauging the influence of AI on human infor-

mation synthesis, it doesn’t fully address influence in the 

other direction. Likely, this dovetails with larger conversa-

tions about transparency in AI and require thoughtful con-

sideration of how AI services should report on themselves. 

Should AI report on the confidence of its own output in a 

meaningful, and machine-readable way, it is likely that 

those reports (logs) can be cross-referenced with user behav-

ior by way of co-associations with system telemetry logs.  

 We have already planned a series of human subjects re-

search protocols to perform psychometric analysis for how 

metrics owing to our inferential framework for human-AI 

influence correlate with extant, established measures of re-

lated concepts (e.g., HCI Trust), and task performance 

measures. It is likely that this work involves more than sim-

ple correlation—subjective measures implicitly rely on 

vastly different timescales than analytics extracted from in-

strumentation data. As such, another consideration is how 

best aggregate output from our framework over sessions, for 

example, to enable meaningful correlations with subjective 

measures. This would avoid the need for interruptive proto-

cols and prompts that could disrupt organic use. 

 Finally, we aim to continue our research and developmen-

tal efforts into methods for pre-processing and segmenta-

tion. One reason why the community hasn’t fully adopted 

instrumentation (at this depth) into its practice is because of 

the skills-based “price of entry”. Our commitment to exam-

ple-based development, open-source releases, and permissi-

ble licensing will provide this accessibility. 
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